Efficient optimization of the Li-ion conductivity of borovanadate glass materials for Li-ion batteries

被引:5
|
作者
Moustafa, M. G. [1 ,2 ]
Saron, K. M. A. [1 ,3 ]
Saad, Mohamed [4 ]
Alqahtani, Mohammed S. [4 ]
Qasem, Ammar [2 ]
Hassanien, Ahmed Saeed [5 ,6 ]
机构
[1] Jouf Univ, Coll Sci & Arts, Phys Dept, Qurayat, Saudi Arabia
[2] Al Azhar Univ, Fac Sci, Phys Dept, Cairo 11884, Egypt
[3] Natl Ctr Res, Mat & Elect Res Inst MERI, Khartoum 2404, Sudan
[4] King Khalid Univ, Coll Appl Med Sci, Dept Radiol Sci, Abha, Saudi Arabia
[5] Benha Univ, Fac Engn Shoubra, Basic Engn Sci Dept, Cairo 11629, Egypt
[6] Shaqra Univ, Coll Comp & Informat Technol, Comp Engn Dept, Shaqra 11961, Saudi Arabia
关键词
Borovanadate glasses; Lithium -ion conductivity; Structural conversion; FTIR; Electrical properties; ELECTRICAL-TRANSPORT PROPERTIES; LITHIUM; MECHANISMS; CERAMICS;
D O I
10.1016/j.solidstatesciences.2023.107212
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
The lithium-doped borovanadate glasses of high chemical purity are obtained via the traditional-melt quenching method. The obtained glasses are identified as having an amorphous character by XRD. DSC spectra reveal the glassy nature and good thermal stability of the prepared samples. FTIR spectroscopy reveals the structural groups of these glasses. The incorporation of Li+ ions into the glass modifies the boron coordination so that the boron coordination number changes from BO4 to BO3. The structural conversion of BO4 to BO3 boosts the number of NBOs. The increased number of NBOs indicates borate network depolymerization and a more open network structure, which leads to Li+ ions easily transferring in the glass network. This, in turn, optimizes the ionic conductivity of the present glassy system and can be of order 10-4 S.cm_ 1 at 300 K. This is the highest value of ionic conductivity reached by the borovanadate glasses at 300 K. Accordingly, borovanadate glasses containing lithium could pave the way for the use of glass materials as electrode material for Li-ion batteries.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Li-Ion Batteries
    Battaglini, John
    [J]. ADVANCED MATERIALS & PROCESSES, 2010, 168 (07): : 26 - 27
  • [2] Li-ion batteries
    Battaglini, John
    [J]. Advanced Materials and Processes, 2010, 168 (07): : 26 - 27
  • [3] LI-ION BATTERIES
    不详
    [J]. ELECTRONICS WORLD, 2016, 122 (1957): : 6 - 6
  • [4] Composite carbonaceous materials for Li-ion batteries
    Hazra, A
    Basumallick, IN
    [J]. JOURNAL OF NEW MATERIALS FOR ELECTROCHEMICAL SYSTEMS, 2001, 4 (04) : 275 - 278
  • [5] Composite anode materials for Li-ion batteries
    Wen, Zhaoyin
    Yang, Xuefin
    Huang, Shahua
    [J]. JOURNAL OF POWER SOURCES, 2007, 174 (02) : 1041 - 1045
  • [6] Nanocomposite anode materials for Li-ion batteries
    Wada, M
    Yin, J
    Tanabe, E
    Kitano, Y
    Tanase, S
    Kajita, O
    Sakai, T
    [J]. ELECTROCHEMISTRY, 2003, 71 (12) : 1064 - 1066
  • [7] Nanostructured anode materials for Li-ion batteries
    Zhao, Nahong
    Fu, Lijun
    Yang, Lichun
    Zhang, Tao
    Wang, Gaojun
    Wu, Yuping
    van Ree, Teunis
    [J]. PURE AND APPLIED CHEMISTRY, 2008, 80 (11) : 2283 - 2295
  • [8] Chalcogels as electrode materials for Li-ion batteries
    Doan-Nguyen, Vicky V. T.
    Subrahmanyam, Kota S.
    Butala, Megan M.
    Gerbec, Jeffrey A.
    Islam, Saiful M.
    Kanipe, Katherine N.
    Wilson, Catrina E.
    Balasubramanian, Mahalingam
    Wiaderek, Kamila M.
    Borkiewicz, Olaf J.
    Chapman, Karena W.
    Chupas, Peter J.
    Moskovits, Martin
    Dunn, Bruce S.
    Kanatzidis, Mercouri G.
    Seshadri, Ram
    [J]. ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2017, 73 : A123 - A124
  • [9] Prospects of oxide materials in Li-ion batteries
    Lahiri, Indranil
    [J]. AMERICAN CERAMIC SOCIETY BULLETIN, 2010, 89 (06): : 17 - 18
  • [10] Nanostructured Materials for Li-Ion Batteries and Beyond
    Li, Xifei
    Sun, Xueliang
    [J]. NANOMATERIALS, 2016, 6 (04)