Inference and parameter estimation on hierarchical belief networks for image segmentation

被引:5
|
作者
Wolf, Christian [1 ,3 ]
Gavin, Gerald [1 ,2 ]
机构
[1] Univ Lyon, CNRS, Lyon, France
[2] Univ Lyon 1, ERIC, F-69622 Villeurbanne, France
[3] INSA, LIRIS, UMR5205, F-69621 Villeurbanne, France
关键词
Belief networks; Image segmentation; Graph cuts; MARKOV RANDOM-FIELD; ENERGY MINIMIZATION; GRAPH CUTS; CLASSIFICATION; MODEL; DOCUMENTS; ALGORITHM;
D O I
10.1016/j.neucom.2009.07.017
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce a new causal hierarchical belief network for image segmentation. Contrary to classical tree structured (or pyramidal) models, the factor graph of the network contains cycles. Each level of the hierarchical structure features the same number of sites as the base level and each site on a given level has several neighbors on the parent level. Compared to tree structured models, the (spatial) random process on the base level of the model is stationary which avoids known drawbacks, namely visual artifacts in the segmented image. We propose different parameterizations of the conditional probability distributions governing the transitions between the image levels. A parametric distribution depending on a single parameter allows the design of a fast inference algorithm on graph cuts, whereas for arbitrary distributions, we propose inference with loopy belief propagation. The method is evaluated on scanned documents, showing an improvement of character recognition results compared to other methods. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:563 / 569
页数:7
相关论文
共 50 条
  • [1] Hierarchical Belief Propagation on Image Segmentation Pyramid
    Yan, Tingman
    Yang, Xilian
    Yang, Genke
    Zhao, Qunfei
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 4432 - 4442
  • [2] Combining neural networks and belief networks for image segmentation
    Williams, CKI
    Feng, XJ
    [J]. NEURAL NETWORKS FOR SIGNAL PROCESSING VIII, 1998, : 393 - 401
  • [3] Parameter-free Hierarchical Image Segmentation
    Abdullah, S. M.
    Tischer, Peter
    Wijewickrema, Sudanthi
    Paplinski, Andrew
    [J]. 2017 IEEE VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP), 2017,
  • [4] Simultaneous parameter estimation and image segmentation for image sequence coding
    Matthews, KE
    Namazi, NM
    [J]. VISUAL COMMUNICATIONS AND IMAGE PROCESSING '96, 1996, 2727 : 1062 - 1069
  • [5] Image segmentation based on hierarchical belief propagation with variable weighting parameters
    Zheng, Chen
    [J]. OPTIK, 2014, 125 (03): : 1158 - 1163
  • [6] A BELIEF PROPAGATION ALGORITHM FOR BIAS FIELD ESTIMATION AND IMAGE SEGMENTATION
    Huang, Rui
    Sang, Nong
    Pavlovic, Vladimir
    Metaxas, Dimitris N.
    [J]. 2011 18TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2011, : 37 - 40
  • [7] Color image segmentation and parameter estimation in a markovian framework
    Kato, Z
    Pong, TC
    Lee, JCM
    [J]. PATTERN RECOGNITION LETTERS, 2001, 22 (3-4) : 309 - 321
  • [8] Parameter estimation with a Bayesian network in medical image segmentation
    Rodrigues, PS
    Giraldi, GA
    [J]. PROCEEDINGS OF THE SEVENTH IASTED INTERNATIONAL CONFERENCE ON COMPUTER GRAPHICS AND IMAGING, 2004, : 364 - 367
  • [9] Universal Golomb-Rice Coding Parameter Estimation Using Deep Belief Networks for Hyperspectral Image Compression
    Jiang, Zhuocheng
    Pan, W. David
    Shen, Hongda
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 11 (10) : 3830 - 3840
  • [10] Multi-input Topology of Deep Belief Networks for Image Segmentation
    Nickfarjam, A. M.
    Ebrahimpour-komleh, H.
    [J]. SECOND INTERNATIONAL CONGRESS ON TECHNOLOGY, COMMUNICATION AND KNOWLEDGE (ICTCK 2015), 2015, : 482 - 485