Parameter estimation with a Bayesian network in medical image segmentation

被引:0
|
作者
Rodrigues, PS [1 ]
Giraldi, GA [1 ]
机构
[1] Natl Lab Sci Comp, Rio De Janeiro, Brazil
关键词
medical image segmentation; Bayesian networks; snakes;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Parameter estimation is a hard problem for image processing and segmentation tasks. In the case of 3D medical images, the segmentation can be performed slice-by-slice, extracting the Region of Interest (RI) in each slice. This task can be accomplished by using edge enhancement methods followed by Active Contour Models, also called snakes. In this case, we must set for each slice several parameters such as thresholds, kernel size for spatial filters, snake parameters (tension, rigidity), etc., which can be a tedious and time consuming task. In this paper we present a new methodology to adjust the parameter values in the slice l + 1 from the extracted region in the slice l. For each slice, several sets of candidate parameter values - and consequently sets of estimated regions - are randomly generated, and a bayesian network is used to maximize the probability of the RI in the slice l + 1 given the RI in slice l. We have tested this methodology in a large medical image database.
引用
收藏
页码:364 / 367
页数:4
相关论文
共 50 条
  • [1] Bayesian estimation for multiscale image segmentation
    Sista, S
    Kashyap, RL
    ICASSP '99: 1999 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS VOLS I-VI, 1999, : 3493 - 3496
  • [2] Online estimation of dynamic Bayesian network parameter
    Cho, Hyun C.
    Fadali, Sami M.
    2006 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORK PROCEEDINGS, VOLS 1-10, 2006, : 3363 - +
  • [3] PERI-Net: a parameter efficient residual inception network for medical image segmentation
    Uslu, Fatmatulzehra
    Bass, Cher
    Bharath, Anil A.
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2020, 28 (04) : 2261 - 2277
  • [4] Simultaneous parameter estimation and image segmentation for image sequence coding
    Matthews, KE
    Namazi, NM
    VISUAL COMMUNICATIONS AND IMAGE PROCESSING '96, 1996, 2727 : 1062 - 1069
  • [5] The application of panoramic segmentation network to medical image segmentation
    Wang, Li
    Zhang, RunZe
    Chen, YongFang
    Wang, YanJiang
    PROCEEDINGS OF 2020 IEEE 15TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP 2020), 2020, : 640 - 645
  • [6] Sparse Bayesian blind image deconvolution with parameter estimation
    Amizic, Bruno
    Molina, Rafael
    Katsaggelos, Aggelos K.
    EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING, 2012,
  • [7] SPARSE BAYESIAN BLIND IMAGE DECONVOLUTION WITH PARAMETER ESTIMATION
    Amizic, Bruno
    Babacan, S. Derin
    Molina, Rafael
    Katsaggelos, Aggelos K.
    18TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO-2010), 2010, : 626 - 630
  • [8] Sparse Bayesian blind image deconvolution with parameter estimation
    Bruno Amizic
    Rafael Molina
    Aggelos K Katsaggelos
    EURASIP Journal on Image and Video Processing, 2012
  • [9] MSAByNet: A multiscale subtraction attention network framework based on Bayesian loss for medical image segmentation
    Zhao, Longxuan
    Wang, Tao
    Chen, Yuanbin
    Zhang, Xinlin
    Tang, Hui
    Zong, Ruige
    Tan, Tao
    Chen, Shun
    Tong, Tong
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 103
  • [10] Color image segmentation and parameter estimation in a markovian framework
    Kato, Z
    Pong, TC
    Lee, JCM
    PATTERN RECOGNITION LETTERS, 2001, 22 (3-4) : 309 - 321