Inference and parameter estimation on hierarchical belief networks for image segmentation

被引:5
|
作者
Wolf, Christian [1 ,3 ]
Gavin, Gerald [1 ,2 ]
机构
[1] Univ Lyon, CNRS, Lyon, France
[2] Univ Lyon 1, ERIC, F-69622 Villeurbanne, France
[3] INSA, LIRIS, UMR5205, F-69621 Villeurbanne, France
关键词
Belief networks; Image segmentation; Graph cuts; MARKOV RANDOM-FIELD; ENERGY MINIMIZATION; GRAPH CUTS; CLASSIFICATION; MODEL; DOCUMENTS; ALGORITHM;
D O I
10.1016/j.neucom.2009.07.017
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce a new causal hierarchical belief network for image segmentation. Contrary to classical tree structured (or pyramidal) models, the factor graph of the network contains cycles. Each level of the hierarchical structure features the same number of sites as the base level and each site on a given level has several neighbors on the parent level. Compared to tree structured models, the (spatial) random process on the base level of the model is stationary which avoids known drawbacks, namely visual artifacts in the segmented image. We propose different parameterizations of the conditional probability distributions governing the transitions between the image levels. A parametric distribution depending on a single parameter allows the design of a fast inference algorithm on graph cuts, whereas for arbitrary distributions, we propose inference with loopy belief propagation. The method is evaluated on scanned documents, showing an improvement of character recognition results compared to other methods. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:563 / 569
页数:7
相关论文
共 50 条
  • [21] Top-down inference with relabeling and mapping rules in hierarchical MRF for image segmentation
    Department of Computer and Information, Hefei University of Technology, Hefei 230009, China
    Zidonghua Xuebao Acta Auto. Sin., 2013, 10 (1581-1593):
  • [22] Parameter estimation in hidden fuzzy Markov random fields and image segmentation
    Salzenstein, F
    Pieczynski, W
    GRAPHICAL MODELS AND IMAGE PROCESSING, 1997, 59 (04): : 205 - 220
  • [23] IMAGE SEGMENTATION BASED ON OBJECT ORIENTED MAPPING PARAMETER-ESTIMATION
    HOTTER, M
    THOMA, R
    SIGNAL PROCESSING, 1988, 15 (03) : 315 - 334
  • [24] An MRF-based image segmentation with unsupervised model parameter estimation
    Toya, Yoshihiko
    Kudo, Hiroyuki
    PROCEEDINGS OF THE FIFTEENTH IAPR INTERNATIONAL CONFERENCE ON MACHINE VISION APPLICATIONS - MVA2017, 2017, : 432 - 435
  • [25] Belief inference for hierarchical hidden states in spatial navigation
    Katayama, Risa
    Shiraki, Ryo
    Ishii, Shin
    Yoshida, Wako
    COMMUNICATIONS BIOLOGY, 2024, 7 (01)
  • [26] Image Segmentation with Cascaded Hierarchical Models and Logistic Disjunctive Normal Networks
    Seyedhosseini, Mojtaba
    Sajjadi, Mehdi
    Tasdizen, Tolga
    2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2013, : 2168 - 2175
  • [27] FAST TOTAL VARIATION IMAGE RESTORATION WITH PARAMETER ESTIMATION USING BAYESIAN INFERENCE
    Amizic, Bruno
    Babacan, S. Derin
    Ng, Michael K.
    Molina, Rafael
    Katsaggelos, Aggelos K.
    2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 770 - 773
  • [28] Homography Estimation from Image Pairs with Hierarchical Convolutional Networks
    Nowruzi, Farzan Erlik
    Laganiere, Robert
    Japkowicz, Nathalie
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017), 2017, : 904 - 911
  • [29] A Hierarchical Image Segmentation Method
    Wang Yongxiong
    Su Jianbo
    PROCEEDINGS OF THE 31ST CHINESE CONTROL CONFERENCE, 2012, : 3696 - 3701
  • [30] HIERARCHICAL PROBABILISTIC IMAGE SEGMENTATION
    KNAPMAN, J
    DICKSON, W
    IMAGE AND VISION COMPUTING, 1994, 12 (07) : 447 - 457