Simulation of a Thin Film Solid Oxide Fuel Cell System Equipped with an Internal Fuel Reforming Unit

被引:2
|
作者
Tsuda, Yuji [1 ]
Shinke, Norihisa [1 ]
Echigo, Mitsuaki [1 ]
机构
[1] Energy Technol Labs Osaka Gas Co Ltd, Konohana Ku, 6-19-9 Torishima, Osaka 5540051, Japan
关键词
SOFC System; Internal Reforming; Process Simulation;   Thin Film SOFC; ANODE;
D O I
10.1252/jcej.21we110
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The effect of an internal fuel reforming unit on the power generation efficiency of a thin-film solid oxide fuel cell (SOFC) system, was evaluated via process simulation. Here, the internal reforming reaction of the fuel on thin anode was unlikely to proceed. The efficiency of the system equipped with an internal fuel reforming unit was found to significantly increase at approximately 600 degrees C compared to that without the unit. In the system with an internal fuel reforming unit, high efficiency was maintained even at low steam to carbon ratios (S/C). It was also found that the difference in fuel concentration between the inlet and outlet of the cell decreased by installing an internal fuel reforming unit inside SOFC and lowering the temperature of the external reformer. Installing an internal fuel reforming unit can be effective for thin-film SOFC systems to operate at temperatures less than 800 degrees C.
引用
收藏
页码:162 / 169
页数:8
相关论文
共 50 条
  • [21] Direct ethanol solid oxide fuel cell operating in gradual internal reforming
    Nobrega, S. D.
    Galesco, M. V.
    Girona, K.
    de Florio, D. Z.
    Steil, M. C.
    Georges, S.
    Fonseca, F. C.
    JOURNAL OF POWER SOURCES, 2012, 213 : 156 - 159
  • [22] Control strategy research of direct internal reforming solid oxide fuel cell
    Wang, Li-Jin
    Zhang, Hui-Sheng
    Weng, Shi-Lie
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2008, 28 (20): : 94 - 98
  • [23] Effect of methane slippage on an indirect internal reforming solid oxide fuel cell
    Aguiar, P
    Chadwick, D
    Kershenbaum, L
    CHEMICAL ENGINEERING SCIENCE, 2004, 59 (01) : 87 - 97
  • [24] Dynamic characteristics of a solid oxide fuel cell with direct internal reforming of methane
    Ho, Thinh X.
    ENERGY CONVERSION AND MANAGEMENT, 2016, 113 : 44 - 51
  • [25] PERFORMANCE BEHAVIOR FOR BUTANE DIRECT INTERNAL REFORMING SOLID OXIDE FUEL CELL
    Park, Kwangjin
    Bae, Gyujong
    Bae, Joongmyeon
    PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON FUEL CELL SCIENCE, ENGINEERING, AND TECHNOLOGY, 2009, : 851 - 855
  • [26] Ethanol internal steam reforming in intermediate temperature solid oxide fuel cell
    Diethelm, Stefan
    Van herle, Jan
    JOURNAL OF POWER SOURCES, 2011, 196 (17) : 7355 - 7362
  • [27] Performance of an Anode Supported Solid Oxide fuel cell with Indirect Internal Reforming
    Park, S. T.
    Zou, J.
    Yoon, H. C.
    Sammes, N. M.
    Chung, J. S.
    SOLID OXIDE FUEL CELLS 13 (SOFC-XIII), 2013, 57 (01): : 377 - 379
  • [28] THERMODYNAMIC SIMULATION OF BIOMASS GAS STEAM REFORMING FOR A SOLID OXIDE FUEL CELL (SOFC) SYSTEM
    Sordi, A.
    da Silva, E. P.
    Neto, A. J. M.
    Lopes, D. G.
    Pinto, C. S.
    Araujo, P. D.
    BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING, 2009, 26 (04) : 745 - 755
  • [29] Biodiesel formulations as fuel for internally reforming solid oxide fuel cell
    Nahar, G.
    Kendall, K.
    FUEL PROCESSING TECHNOLOGY, 2011, 92 (07) : 1345 - 1354
  • [30] Performance comparison of internal reforming against external reforming in a solid oxide fuel cell, gas turbine hybrid system
    Liese, EA
    Gemmen, RS
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2005, 127 (01): : 86 - 90