Effect of methane slippage on an indirect internal reforming solid oxide fuel cell

被引:20
|
作者
Aguiar, P [1 ]
Chadwick, D [1 ]
Kershenbaum, L [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Chem Engn & Chem Technol, London SW7 2BY, England
基金
英国工程与自然科学研究理事会;
关键词
SOFCs; steam reforming; direct and indirect internal reforming; modelling;
D O I
10.1016/j.ces.2003.09.022
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Creation of an autothermal system by coupling an endothermic to an exothermic reaction demands matching the thermal requirements of the two reactions. The application studied here is the operation of a solid oxide fuel cell (SOFC) with both direct (DIR) and indirect (IIR) internal reforming of methane. Such internal reforming within a high-temperature fuel cell module can lead to an overall autothermal operation which simplifies the system design and increases efficiency. However, such coupling is not easy to achieve because of the mismatch between the thermal load associated with the rate of steam reforming at typical SOFC temperatures and the local amount of beat available from the fuel cell reactions. Previous results have shown that the use of typical metal-based (e.g. Ni) IIR catalysts leads to full methane consumption but undesirable local cooling at the reformer entrance and the use of less active IIR catalysts (e.g. non-metals or diffusion limited nickel) leads to methane being carried-over into the SOFC anode (methane slippage). In order to evaluate performance in the latter case, a combined DIR and IIR SOFC steady-state model has been developed. Simulation results have shown that, lowering the IIR catalyst activity to prevent local cooling effects at the reformer entrance is not adequate, as the fast kinetics of the direct reforming reaction then lead to full methane conversion and steep temperature gradients in the first 10% of the fuel channel length. It is shown that the simultaneous reduction of the anode DIR reaction rate improves performance considerably. The system behaviour towards changes in current density, operating pressure, and flow configuration (counter-flow vs. co-flow) has been studied. Reduction of both DIR and IIR catalyst activity combined with a counter-flow operation leads to the best performance. System performance with an IIR oxide-based catalyst is also evaluated. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:87 / 97
页数:11
相关论文
共 50 条
  • [1] Modelling of an indirect internal reforming solid oxide fuel cell
    Aguiar, P
    Chadwick, D
    Kershenbaum, L
    [J]. CHEMICAL ENGINEERING SCIENCE, 2002, 57 (10) : 1665 - 1677
  • [2] Internal reforming of methane in solid oxide fuel cell systems
    Peters, R
    Dahl, R
    Klüttgen, U
    Palm, C
    Stolten, D
    [J]. JOURNAL OF POWER SOURCES, 2002, 106 (1-2) : 238 - 244
  • [3] On the effect of methane internal reforming modelling in solid oxide fuel cells
    Sanchez, D.
    Chacartegui, R.
    Munoz, A.
    Sanchez, T.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (07) : 1834 - 1844
  • [4] Numerical analysis of an internal methane reforming solid oxide fuel cell with fuel recycling
    Eveloy, Valerie
    [J]. APPLIED ENERGY, 2012, 93 : 107 - 115
  • [5] Performance of an Anode Supported Solid Oxide fuel cell with Indirect Internal Reforming
    Park, S. T.
    Zou, J.
    Yoon, H. C.
    Sammes, N. M.
    Chung, J. S.
    [J]. SOLID OXIDE FUEL CELLS 13 (SOFC-XIII), 2013, 57 (01): : 377 - 379
  • [6] Dynamic characteristics of a solid oxide fuel cell with direct internal reforming of methane
    Ho, Thinh X.
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2016, 113 : 44 - 51
  • [7] Internal dry reforming of methane in solid oxide fuel cells
    Moarrefi, Saeed
    Jacob, Mohan
    Li, Chao'en
    Cai, Weiwei
    Fan, Liyuan
    [J]. CHEMICAL ENGINEERING JOURNAL, 2024, 489
  • [8] Aspects of the internal reforming of methane in solid oxide fuel cells
    M. Poppinger
    H. Landes
    [J]. Ionics, 2001, 7 : 7 - 15
  • [9] Aspects of the Internal Reforming of Methane in Solid Oxide Fuel Cells
    Poppinger, M.
    Landes, H.
    [J]. IONICS, 2001, 7 (1-2) : 7 - 15
  • [10] Insights on the electrochemical performance of indirect internal reforming of biogas into a solid oxide fuel cell
    Santoro, Mariarita
    Di Bartolomeo, Elisabetta
    Luisetto, Igor
    Arico, A. S.
    Squadrito, G.
    Zignani, S. C.
    Lo Faro, M.
    [J]. ELECTROCHIMICA ACTA, 2022, 409