Automatic smoothing parameter selection in non-parametric models for longitudinal data

被引:0
|
作者
Berhane, K [1 ]
Rao, JS
机构
[1] Univ Pittsburgh, Dept Family Med & Clin Epidemiol, Pittsburgh, PA 15261 USA
[2] Univ Pittsburgh, Dept Biostat, Pittsburgh, PA 15261 USA
[3] Cleveland Clin Fdn, Dept Biostat, Cleveland, OH 44195 USA
来源
关键词
generalized estimating equations; quasi-likelihood; correlated data; local-scoring; smoothing; cross validation; BRUTO;
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The selection of smoothing parameters by generalized cross-validation (GCV) becomes complicated when dealing with correlated data. In this paper, we develop an automatic algorithm for selection of smoothing parameters in non-parametric longitudinal models by combining the BRUTO algorithm of Hastie (1989) and the modifications to GCV due to Altman (1990) to handle the correlation. The algorithm is detailed and illustrated via analysis of a panic-attack data set. (C) 1998 John Wiley & Sons, Ltd.
引用
收藏
页码:289 / 296
页数:8
相关论文
共 50 条
  • [41] Non-parametric data selection for neural learning in non-stationary time series
    Siemens AG, R and D, Otto-Hahn-Ring 6, 81739 Munich, Germany
    NEURAL NETW., 3 (401-407):
  • [42] Non-parametric smoothing of spatio-temporal point processes
    Grillenzoni, C
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2005, 128 (01) : 61 - 78
  • [43] Non-parametric smoothing of the location model in mixed variable discrimination
    Asparoukhov, O
    Krzanowski, WJ
    STATISTICS AND COMPUTING, 2000, 10 (04) : 289 - 297
  • [44] A novel rank-based non-parametric method for longitudinal ordinal data
    Zhuang, Yan
    Guan, Ying
    Qiu, Libin
    Lai, Meisheng
    Tan, Ming T.
    Chen, Pingyan
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2018, 27 (09) : 2775 - 2794
  • [45] Non-parametric data selection for neural learning in non-stationary time series
    Deco, G
    Neuneier, R
    Schurmann, B
    NEURAL NETWORKS, 1997, 10 (03) : 401 - 407
  • [46] Non-parametric smoothing of the location model in mixed variable discrimination
    O. Asparoukhov
    W. J. Krzanowski
    Statistics and Computing, 2000, 10 : 289 - 297
  • [47] Bayesian non-parametric models for spatially indexed data of mixed type
    Papageorgiou, Georgios
    Richardson, Sylvia
    Best, Nicky
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2015, 77 (05) : 973 - 999
  • [48] Flexible non-parametric regression models for compositional response data with zeros
    Tsagris, Michail
    Alenazi, Abdulaziz
    Stewart, Connie
    STATISTICS AND COMPUTING, 2023, 33 (05)
  • [49] Flexible non-parametric regression models for compositional response data with zeros
    Michail Tsagris
    Abdulaziz Alenazi
    Connie Stewart
    Statistics and Computing, 2023, 33
  • [50] New local estimation procedure for a non-parametric regression function for longitudinal data
    Yao, Weixin
    Li, Runze
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2013, 75 (01) : 123 - 138