Mn2C monolayer: A superior anode material offering good conductivity, high storage capacity and ultrafast ion diffusion for Li-ion and Na-ion batteries

被引:58
|
作者
Zhang, Xiaoming [1 ,2 ]
Meng, Weizhen [1 ,2 ]
He, Tingli [1 ,2 ]
Jin, Lei [1 ,2 ]
Dai, Xuefang [1 ,2 ]
Liu, Guodong [1 ,2 ]
机构
[1] Hebei Univ Technol, State Key Lab Reliabil & Intelligence Elect Equip, Tianjin 300130, Peoples R China
[2] Hebei Univ Technol, Sch Mat Sci & Engn, Tianjin 300130, Peoples R China
关键词
Li-ion/Na-ion batteries; Anode materials; Mn2C monolayer; GENERALIZED GRADIENT APPROXIMATION; LITHIUM-ION; ELECTRODE MATERIAL; ENERGY-STORAGE; SODIUM; METAL; TEMPERATURE; PERFORMANCE; CAPABILITY; GRAPHENE;
D O I
10.1016/j.apsusc.2019.144091
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Developing superior anode materials with offering good conductivity, excellent ion diffusion ability, and high storage capacity is highly desired in current Li-/Na-ion battery (LIB/NIB) technologies. Here, we demonstrate Mn2C monolayer can serve as a such anode material with providing excellent performances on all the crucial judgments. Mn2C monolayer offers stable Li/Na adsorption and relatively low open-circuit voltages, which are desired for anode materials. Mn2C monolayer hosts excellent conductivity during Li/Na adsorption process. Mn2C monolayer shows very high specific capacities for Li (887.6 mA h g(-1)) and Na (443.6 mA h g(-1)). Remarkably, Mn2C monolayer nearly has the lowest Li/Na diffusion barrier among known 2D anode materials, which offers ultrafast ion diffusion. These results suggest Mn2C monolayer is one of the few superior LIB/NIB anode materials indentified so far.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Fabrication of a Stable and Highly Effective Anode Material for Li-Ion/Na-Ion Batteries Utilizing ZIF-12
    Bugday, Nesrin
    Wang, Haoji
    Hong, Ningyun
    Zhang, Baichao
    Deng, Wentao
    Zou, Guoqiang
    Hou, Hongshuai
    Yasar, Sedat
    Ji, Xiaobo
    SMALL, 2024, 20 (44)
  • [32] Ab initio study of P-doped borocarbonitride nanosheet as anode material for Li-ion and Na-ion batteries
    Nazneen, Farzana
    Tanwee, Nusrat Zahan
    Shahed, Naafis Ahnaf
    Khanom, Shamima
    Hossain, Kamal
    Khandaker, Jahirul Islam
    Ahmed, Farid
    Abul Hossain, Md.
    MATERIALS TODAY COMMUNICATIONS, 2020, 25
  • [33] CaSnO3 :: a high capacity anode material for Li-ion batteries
    Sharma, N
    Shaju, KM
    Rao, GVS
    Chowdari, BVR
    SOLID STATE IONICS: TRENDS IN THE NEW MILLENNIUM, PROCEEDINGS, 2002, : 87 - 95
  • [34] 3D porous SnO2/MXene 2 /MXene as a superior anode material for Li-ion and Na-ion battery
    Du, Changze
    Chen, Xinying
    Zhu, Wenzheng
    Feng, Qian
    Li, Jiaxin
    Zheng, Yongping
    Huang, Zhigao
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2024, 967
  • [35] Using an organic acid as a universal anode for highly efficient Li-ion, Na-ion and K-ion batteries
    Wang, Chuan
    Tang, Wu
    Yao, Zeyi
    Chen, Yongzhen
    Pei, Jingfang
    Fan, Cong
    ORGANIC ELECTRONICS, 2018, 62 : 536 - 541
  • [36] Vanadium Carbide (V4C3) MXene as an Efficient Anode for Li-Ion and Na-Ion Batteries
    Peng, Qiong
    Rehman, Javed
    Eid, Kamel
    Alofi, Ayman S.
    Laref, Amel
    Albaqami, Munirah D.
    Alotabi, Reham Ghazi
    Shibl, Mohamed F.
    NANOMATERIALS, 2022, 12 (16)
  • [37] Synthesis and electrochemical performance of SnO2-Fe2O3 composite as an anode material for Na-ion and Li-ion batteries
    Wu, Xuehang
    Wu, Wenwei
    Zhou, Yuan
    Huang, Xusheng
    Chen, Wen
    Wang, Qing
    POWDER TECHNOLOGY, 2015, 280 : 119 - 123
  • [38] Pentagonal B2C monolayer with extremely high theoretical capacity for Li-/Na-ion batteries
    Cheng, Zishuang
    Zhang, Xiaoming
    Zhang, Hui
    Gao, Jianbo
    Liu, Heyan
    Yu, Xiao
    Dai, Xuefang
    Liu, Guodong
    Chen, Guifeng
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2021, 23 (10) : 6278 - 6285
  • [39] Nano Co3O4 as Anode Material for Li-Ion and Na-Ion Batteries: An Insight into Surface Morphology
    Palani, Subalakshmi
    Arumugam, Sivashanmugam
    CHEMISTRYSELECT, 2018, 3 (18): : 5040 - 5049
  • [40] Maleic anhydride as a promising anode material for Na-Ion and Li-Ion batteries with using a proper substrate: A first principles study
    Momeni, Mohammad Jafar
    Targholi, Ehsan
    Mousavi-Khoshdel, Morteza
    COMPUTATIONAL MATERIALS SCIENCE, 2016, 124 : 166 - 172