Mn2C monolayer: A superior anode material offering good conductivity, high storage capacity and ultrafast ion diffusion for Li-ion and Na-ion batteries

被引:58
|
作者
Zhang, Xiaoming [1 ,2 ]
Meng, Weizhen [1 ,2 ]
He, Tingli [1 ,2 ]
Jin, Lei [1 ,2 ]
Dai, Xuefang [1 ,2 ]
Liu, Guodong [1 ,2 ]
机构
[1] Hebei Univ Technol, State Key Lab Reliabil & Intelligence Elect Equip, Tianjin 300130, Peoples R China
[2] Hebei Univ Technol, Sch Mat Sci & Engn, Tianjin 300130, Peoples R China
关键词
Li-ion/Na-ion batteries; Anode materials; Mn2C monolayer; GENERALIZED GRADIENT APPROXIMATION; LITHIUM-ION; ELECTRODE MATERIAL; ENERGY-STORAGE; SODIUM; METAL; TEMPERATURE; PERFORMANCE; CAPABILITY; GRAPHENE;
D O I
10.1016/j.apsusc.2019.144091
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Developing superior anode materials with offering good conductivity, excellent ion diffusion ability, and high storage capacity is highly desired in current Li-/Na-ion battery (LIB/NIB) technologies. Here, we demonstrate Mn2C monolayer can serve as a such anode material with providing excellent performances on all the crucial judgments. Mn2C monolayer offers stable Li/Na adsorption and relatively low open-circuit voltages, which are desired for anode materials. Mn2C monolayer hosts excellent conductivity during Li/Na adsorption process. Mn2C monolayer shows very high specific capacities for Li (887.6 mA h g(-1)) and Na (443.6 mA h g(-1)). Remarkably, Mn2C monolayer nearly has the lowest Li/Na diffusion barrier among known 2D anode materials, which offers ultrafast ion diffusion. These results suggest Mn2C monolayer is one of the few superior LIB/NIB anode materials indentified so far.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Modelling of monolayer penta-PtN2 as an anode material for Li/Na-ion storage
    Chen, Lei
    Du, Wenling
    Guo, Jiyuan
    Shu, Huabing
    Wang, Ying
    Dai, Jun
    MATERIALS CHEMISTRY AND PHYSICS, 2021, 262
  • [22] Na-Mn-O Nanocrystals as a High Capacity and Long Life Anode Material for Li-Ion Batteries
    Zhang, Jie
    He, Ting
    Zhang, Wei
    Sheng, Jinzhi
    Amiinu, Ibrahim Saana
    Kou, Zongkui
    Yang, Jinlong
    Mai, Liqiang
    Mu, Shichun
    ADVANCED ENERGY MATERIALS, 2017, 7 (05)
  • [23] Theoretical Investigation of C3N Monolayer as Anode Material for Li/Na-Ion Batteries
    Kasprzak, G. T.
    Gruszka, K. M.
    Durajski, A. P.
    ACTA PHYSICA POLONICA A, 2021, 139 (05) : 621 - 624
  • [24] A polyimide anode with high capacity and superior cyclability for aqueous Na-ion batteries
    Deng, Wenwen
    Shen, Yifei
    Qian, Jiangfeng
    Yang, Hanxi
    CHEMICAL COMMUNICATIONS, 2015, 51 (24) : 5097 - 5099
  • [25] NbO2 a Highly Stable, Ultrafast Anode Material for Li- and Na-Ion Batteries
    Chithaiah, Pallellappa
    Sahoo, Ramesh Chandra
    Seok, Jun Ho
    Lee, Sang Uck
    Matte, H. S. S. Ramakrishna
    Rao, C. N. R.
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (39) : 45868 - 45875
  • [26] Novel borophosphene as a high capacity anode material for Li-ion storage
    Du, W. L.
    Chen, L.
    Guo, J. Y.
    Shu, H. B.
    JOURNAL OF SOLID STATE CHEMISTRY, 2021, 296
  • [27] A Macromolecule Cathode for High-Performance Li-Ion and Na-Ion Batteries
    Hu, Jiahui
    Tang, Wu
    Ma, Huilin
    Fan, Kexin
    Li, Wenjun
    Fan, Cong
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2024, 12 (11) : 4576 - 4586
  • [28] Silicene/BN vdW heterostructure as an ultrafast ion diffusion anode material for Na-ion battery
    Wang, Tianxing
    Li, Chensi
    Xia, Congxin
    Yin, Lizhi
    An, Yipeng
    Wei, Shuyi
    Dai, Xianqi
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2020, 122
  • [29] Ultrafast anode for high voltage aqueous Li-ion batteries
    Levi, M. D.
    Shilina, Yu.
    Salitra, G.
    Aurbach, D.
    Guyot, E.
    Seghir, S.
    Lecuire, J. M.
    Boulanger, C.
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2012, 16 (11) : 3443 - 3448
  • [30] Ultrafast anode for high voltage aqueous Li-ion batteries
    M. D. Levi
    Yu. Shilina
    G. Salitra
    D. Aurbach
    E. Guyot
    S. Seghir
    J. M. Lecuire
    C. Boulanger
    Journal of Solid State Electrochemistry, 2012, 16 : 3443 - 3448