Fractal trees with side branching

被引:40
|
作者
Newman, WI [1 ]
Turcotte, DL
Gabrielov, AM
机构
[1] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[4] Cornell Univ, Dept Geol Sci, Ithaca, NY 14853 USA
[5] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[6] Purdue Univ, Dept Earth & Atmospher Sci, W Lafayette, IN 47907 USA
关键词
D O I
10.1142/S0218348X97000486
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper considers fractal trees with self-similar side branching. The Tokunaga classification system for side branching is introduced, along with the Tokunaga self-similarity condition. Area filling (D = 2) and volume filling (D = 3) deterministic fractal tree constructions are introduced both with and without side branching. Applications to diffusion limited aggregation (DLA), actual drainage networks, as well as biology are considered. It is suggested that the Tokunaga taxonomy may have wide applicability in nature.
引用
收藏
页码:603 / 614
页数:12
相关论文
共 50 条
  • [41] Random trees with superexponential branching weights
    Janson, Svante
    Jonsson, Thordur
    Stefansson, Sigurdur Orn
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (48)
  • [42] BRANCHING RANDOM-WALKS ON TREES
    MADRAS, N
    SCHINAZI, R
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1992, 42 (02) : 255 - 267
  • [43] Universal Functions and Unbounded Branching Trees
    A. N. Khisamiev
    Algebra and Logic, 2018, 57 : 309 - 319
  • [44] Damping by branching: a bioinspiration from trees
    Theckes, B.
    de Langre, E.
    Boutillon, X.
    BIOINSPIRATION & BIOMIMETICS, 2011, 6 (04)
  • [45] Branching structure of uniform recursive trees
    Feng, QQ
    Su, C
    Hu, ZS
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2005, 48 (06): : 769 - 784
  • [46] Benzenoids with branching graphs being trees
    Chen, RS
    JOURNAL OF MOLECULAR STRUCTURE, 1997, 415 (03) : 239 - 247
  • [47] Constructing Branching Trees of Geostatistical Simulations
    Margaret Armstrong
    Juan Valencia
    Guido Lagos
    Xavier Emery
    Mathematical Geosciences, 2022, 54 : 711 - 743
  • [48] Branching structure of uniform recursive trees
    FENG Qunqiang
    Science China Mathematics, 2005, (06) : 769 - 784
  • [49] DICHOTOMOUS AND PSEUDODICHOTOMOUS BRANCHING OF MONOCOTYLEDONOUS TREES
    TOMLINSON, PB
    ZIMMERMANN, MH
    SIMPSON, PG
    PHYTOMORPHOLOGY, 1970, 20 (01): : 36 - +
  • [50] QUANTITATIVE MORPHOMETRY OF BRANCHING STRUCTURE OF TREES
    BARKER, SB
    CUMMING, G
    HORSFIELD, K
    JOURNAL OF THEORETICAL BIOLOGY, 1973, 40 (01) : 33 - 43