Fractal trees with side branching

被引:40
|
作者
Newman, WI [1 ]
Turcotte, DL
Gabrielov, AM
机构
[1] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[4] Cornell Univ, Dept Geol Sci, Ithaca, NY 14853 USA
[5] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[6] Purdue Univ, Dept Earth & Atmospher Sci, W Lafayette, IN 47907 USA
关键词
D O I
10.1142/S0218348X97000486
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper considers fractal trees with self-similar side branching. The Tokunaga classification system for side branching is introduced, along with the Tokunaga self-similarity condition. Area filling (D = 2) and volume filling (D = 3) deterministic fractal tree constructions are introduced both with and without side branching. Applications to diffusion limited aggregation (DLA), actual drainage networks, as well as biology are considered. It is suggested that the Tokunaga taxonomy may have wide applicability in nature.
引用
收藏
页码:603 / 614
页数:12
相关论文
共 50 条
  • [31] STRUCTURAL THEORY OF TREES I. BRANCHING AND CONDENSATIONS OF TREES
    Goranko, Valentin
    Kellerman, Ruaan
    Zanardo, Alberto
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2023, 18 (02) : 188 - 209
  • [32] Clumping in multitype-branching trees
    LopezMimbela, JA
    Wakolbinger, A
    ADVANCES IN APPLIED PROBABILITY, 1996, 28 (04) : 1034 - 1050
  • [33] Branching structure of uniform recursive trees
    Qunqiang Feng
    Chun Su
    Zhishui Hu
    Science in China Series A: Mathematics, 2005, 48 : 769 - 784
  • [34] TREES AND STREAMS - EFFICIENCY OF BRANCHING PATTERNS
    LEOPOLD, LB
    JOURNAL OF THEORETICAL BIOLOGY, 1971, 31 (02) : 339 - &
  • [35] MORPHOLOGY OF BRANCHING TREES RELATED TO ENTROPY
    HORSFIELD, K
    RESPIRATION PHYSIOLOGY, 1977, 29 (02): : 179 - 184
  • [36] THE COALESCENT POINT PROCESS OF BRANCHING TREES
    Lambert, Amaury
    Popovic, Lea
    ANNALS OF APPLIED PROBABILITY, 2013, 23 (01): : 99 - 144
  • [37] UNIVERSAL FUNCTIONS AND UNBOUNDED BRANCHING TREES
    Khisamiev, A. N.
    ALGEBRA AND LOGIC, 2018, 57 (04) : 309 - 319
  • [38] A STOCHASTIC DESCRIPTION OF BRANCHING STRUCTURES OF TREES
    AGU, M
    YOKOI, Y
    JOURNAL OF THEORETICAL BIOLOGY, 1985, 112 (04) : 667 - 676
  • [39] Random trees and general branching processes
    Rudas, Anna
    Toth, Balint
    Valklo, Benedek
    RANDOM STRUCTURES & ALGORITHMS, 2007, 31 (02) : 186 - 202
  • [40] Constructing Branching Trees of Geostatistical Simulations
    Armstrong, Margaret
    Valencia, Juan
    Lagos, Guido
    Emery, Xavier
    MATHEMATICAL GEOSCIENCES, 2022, 54 (04) : 711 - 743