Influence of substrate polarity of (0001) and (0 0 0 (1)over-bar)GaN surfaces on hydride vapor-phase epitaxy of InN

被引:3
|
作者
Togashi, Rie [1 ]
Murakami, Hisashi [1 ]
Kumagai, Yoshinao [1 ]
Koukitu, Akinori [1 ]
机构
[1] Tokyo Univ Agr & Technol, Grad Sch Engn, Dept Appl Chem, Koganei, Tokyo 1848588, Japan
关键词
Characterization; Hydride vapor-phase epitaxy; Nitrides; Semiconducting indium compounds; FUNDAMENTAL-BAND GAP; HEXAGONAL INN; GROWTH; DECOMPOSITION; TEMPERATURE; ABSORPTION; TRANSPORT; ALLOYS; ENERGY; LAYERS;
D O I
10.1016/j.jcrysgro.2009.12.019
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
InN layers were grown on both-sides-polished (0 0 0 1) freestanding GaN substrates by hydride vapor-phase epitaxy (HVPE) in the growth temperature range from 450 to 650 degrees C with an input partial pressure of NH(3) ranging from 3.0 x 10(-2) to 3.8 x 10(-1) atm. An In-polar InN layer was grown on the (0 0 0 1) Ga-polar surface, while a N-polar InN layer was grown on the (0 0 0 (1) over bar) N-polar surface of the freestanding GaN substrate. The InN layers of both polarities grown at 550 degrees C had smooth surfaces, ideal lattice constants of the wurtzite InN structure, and a minimum optical absorption edge energy of about 0.75 eV. Surface morphologies of the InN layers were also dependent on the NH(3) input partial pressure. The surface of In-polar InN became smoother under a high NH(3) input partial pressure, whereas the N-polar InN required a low NH(3) input partial pressure to achieve a smooth surface. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:651 / 655
页数:5
相关论文
共 50 条
  • [1] Analyses of GaN (0001) and (0 0 0 (1)over-bar) surfaces by highly-charged ions
    Motohashi, K.
    Hosoya, K.
    Imano, M.
    Tsurubuchi, S.
    Koukitu, A.
    SURFACE SCIENCE, 2007, 601 (22) : 5304 - 5308
  • [2] Photoemission studies on GaN(0 0 0 (1)over-bar) surfaces
    Kowalski, BJ
    Plucinski, L
    Kopalko, K
    Iwanowski, RJ
    Orlowski, BA
    Johnson, RL
    Grzegory, I
    Porowski, S
    SURFACE SCIENCE, 2001, 482 : 740 - 745
  • [3] First-principles study of Mg incorporation at wurtzite InN (0001) and (0 0 0 (1)over-bar) surfaces
    Ding, S. F.
    Qu, X. P.
    Fan, G. H.
    PHYSICA B-CONDENSED MATTER, 2009, 404 (8-11) : 1279 - 1282
  • [4] Magnesium adsorption and incorporation in InN (0001) and (0 0 0 (1)over-bar) surfaces: A first-principles study
    Belabbes, A.
    Kioseoglou, J.
    Komninou, Ph.
    Evangelakis, G. A.
    Ferhat, M.
    Karakostas, Th.
    APPLIED SURFACE SCIENCE, 2009, 255 (20) : 8475 - 8482
  • [5] Stable structure and effects of oxygen on InN (1 0 (1)over-bar 0) and (1 1 (2)over-bar 0) surfaces
    Wang, Jianli
    Bai, Dongmei
    Tang, Gang
    Wu, X. S.
    Gu, Mingqiang
    JOURNAL OF CRYSTAL GROWTH, 2011, 327 (01) : 233 - 236
  • [6] Microstructure of GaN films on GaAs(1 0 0) substrates grown by hydride vapor-phase epitaxy
    Sakai, A
    Kimura, A
    Sunakawa, H
    Usui, A
    JOURNAL OF CRYSTAL GROWTH, 1998, 183 (1-2) : 49 - 61
  • [7] Orientation control of GaN {1 1 (2)over-bar 2} and {1 0 (1)over-bar (3)over-bar} grown on (1 0 (1)over-bar 0) sapphire by metal-organic vapor phase epitaxy
    Ploch, Simon
    Frentrup, Martin
    Wernicke, Tim
    Pristovsek, Markus
    Weyers, Markus
    Kneissl, Michael
    JOURNAL OF CRYSTAL GROWTH, 2010, 312 (15) : 2171 - 2174
  • [8] Growth condition dependence of GaN crystal structure on (0 0 1)GaAs by hydride vapor-phase epitaxy
    Tsuchiya, Harutoshi
    Sunaba, Kenji
    Suemasu, Takashi
    Hasegawa, Fumio
    Journal of Crystal Growth, 189-190 : 395 - 400
  • [9] Theory of Ga, N and H terminated GaN (0 0 0 1)/(0 0 0 (1)over-bar) surfaces
    Elsner, J
    Haugk, M
    Jungnickel, G
    Frauenheim, T
    SOLID STATE COMMUNICATIONS, 1998, 106 (11) : 739 - 743
  • [10] Reduction in residual impurities in semi-polar (3 0 (3)over-bar (1)over-bar) and (2 0 (2)over-bar (1)over-bar) GaN grown by metalorganic vapor phase epitaxy
    Yamada, Hisashi
    Chonan, Hiroshi
    Yamada, Toshikazu
    Shimizu, Mitsuaki
    JOURNAL OF CRYSTAL GROWTH, 2019, 512 : 119 - 123