Enhancement of cerebrovascular 4D flow MRI velocity fields using machine learning and computational fluid dynamics simulation data

被引:48
|
作者
Rutkowski, David R. [1 ,2 ]
Roldan-Alzate, Alejandro [1 ,2 ]
Johnson, Kevin M. [2 ,3 ]
机构
[1] Univ Wisconsin, Mech Engn, Madison, WI USA
[2] Univ Wisconsin, Radiol, 1111 Highland Ave, Madison, WI 53705 USA
[3] Univ Wisconsin, Med Phys, 1111 Highland Ave, Madison, WI 53705 USA
基金
美国国家卫生研究院;
关键词
HEMODYNAMICS; ACCURACY;
D O I
10.1038/s41598-021-89636-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Blood flow metrics obtained with four-dimensional (4D) flow phase contrast (PC) magnetic resonance imaging (MRI) can be of great value in clinical and experimental cerebrovascular analysis. However, limitations in both quantitative and qualitative analyses can result from errors inherent to PC MRI. One method that excels in creating low-error, physics-based, velocity fields is computational fluid dynamics (CFD). Augmentation of cerebral 4D flow MRI data with CFD-informed neural networks may provide a method to produce highly accurate physiological flow fields. In this preliminary study, the potential utility of such a method was demonstrated by using high resolution patient-specific CFD data to train a convolutional neural network, and then using the trained network to enhance MRI-derived velocity fields in cerebral blood vessel data sets. Through testing on simulated images, phantom data, and cerebrovascular 4D flow data from 20 patients, the trained network successfully de-noised flow images, decreased velocity error, and enhanced near-vessel-wall velocity quantification and visualization. Such image enhancement can improve experimental and clinical qualitative and quantitative cerebrovascular PC MRI analysis.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Enhancement of cerebrovascular 4D flow MRI velocity fields using machine learning and computational fluid dynamics simulation data
    David R. Rutkowski
    Alejandro Roldán-Alzate
    Kevin M. Johnson
    Scientific Reports, 11
  • [2] Establishing the distribution of cerebrovascular resistance using computational fluid dynamics and 4D flow MRI
    Vikstrom, Axel
    Holmlund, Petter
    Holmgren, Madelene
    Wahlin, Anders
    Zarrinkoob, Laleh
    Malm, Jan
    Eklund, Anders
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [3] 4DFlowNet: Super-Resolution 4D Flow MRI Using Deep Learning and Computational Fluid Dynamics
    Ferdian, Edward
    Suinesiaputra, Avan
    Dubowitz, David J.
    Zhao, Debbie
    Wang, Alan
    Cowan, Brett
    Young, Alistair A.
    FRONTIERS IN PHYSICS, 2020, 8
  • [4] ESTIMATION OF WALL SHEAR STRESS USING 4D FLOW CARDIOVASCULAR MRI AND COMPUTATIONAL FLUID DYNAMICS
    Soudah, E.
    Casacuberta, J.
    Gamez-Montero, P. J.
    Perez, J. S.
    Rodriguez-Cancio, M.
    Raush, G.
    Li, C. H.
    Carreras, F.
    Castilla, R.
    JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2017, 17 (03)
  • [5] Super-resolution 4D flow MRI to quantify aortic regurgitation using computational fluid dynamics and deep learning
    Long, Derek
    McMurdo, Cameron
    Ferdian, Edward
    Mauger, Charlene A.
    Marlevi, David
    Nash, Martyn P.
    Young, Alistair A.
    INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING, 2023, 39 (06): : 1189 - 1202
  • [6] Super-resolution 4D flow MRI to quantify aortic regurgitation using computational fluid dynamics and deep learning
    Derek Long
    Cameron McMurdo
    Edward Ferdian
    Charlène A. Mauger
    David Marlevi
    Martyn P. Nash
    Alistair A. Young
    The International Journal of Cardiovascular Imaging, 2023, 39 : 1189 - 1202
  • [7] Thoracic aortic aneurysm: 4D flow MRI and computational fluid dynamics model
    Callaghan, F. M.
    Karkouri, J.
    Broadhouse, K.
    Evin, M.
    Fletcher, D. F.
    Grieve, S. M.
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING, 2015, 18 : 1894 - 1895
  • [8] Merging computational fluid dynamics and 4D Flow MRI using proper orthogonal decomposition and ridge regression
    Bakhshinejad, Ali
    Baghaie, Ahmadreza
    Vali, Alireza
    Saloner, David
    Rayz, Vitaliy L.
    D'Souza, Roshan M.
    JOURNAL OF BIOMECHANICS, 2017, 58 : 162 - 173
  • [9] New imaging tools in cardiovascular medicine: computational fluid dynamics and 4D flow MRI
    Itatani, Keiichi
    Miyazaki, Shohei
    Furusawa, Tokoki
    Numata, Satoshi
    Yamazaki, Sachiko
    Morimoto, Kazuki
    Makino, Rina
    Morichi, Hiroko
    Nishino, Teruyasu
    Yaku, Hitoshi
    GENERAL THORACIC AND CARDIOVASCULAR SURGERY, 2017, 65 (11) : 611 - 621
  • [10] Hemodynamic Evaluation of Intracranial Aneurysm: Comparison of Computational Fluid Dynamics with 4D Flow MRI
    Misaki, Kouichi
    Futami, Kazuya
    Uno, Takehiro
    Nambu, Iku
    Yoshikawa, Akifumi
    Kamide, Tomoya
    Nakada, Mitsutoshi
    NEUROSURGERY, 2020, 67 : 120 - 121