A structure-preserving algorithm for the linear lossless dissipative Hamiltonian eigenvalue problem

被引:0
|
作者
Lyu, Xing-Long [1 ,2 ]
机构
[1] Southeast Univ, Sch Math, Nanjing 211189, Peoples R China
[2] Nanjing Ctr Appl Math, Nanjing 211135, Peoples R China
关键词
Structure-preserving algorithm; T-Hamiltonian eigenvalue problem; T-symplectic URV decomposition; periodic QR; SYSTEMS; FORMULATION;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we propose a structure-preserving algorithm for computing all eigenvalues of the generalized eigenvalue problem BAx = lambda Ex that arises in linear lossless dissipative Hamiltonian descriptor systems, with B being skew-symmetric and A(T)E = E(T)A. We rewrite the problem as BAE(-1)y = lambda y to preserve the symmetry of A(T)E and convert the problem into the equivalent T-Hamiltonian eigenvalue problem Hz = lambda z. Furthermore, T-symplectic URV decomposition and a corresponding periodic QR (PQR) method are proposed to compute all eigenvalues of H. The structurepreserving property ensures that the computed eigenvalues appear pairwise, in the form (lambda, -lambda), as they should. Numerical experiments show that the computed eigenvalues are more accurate and strictly paired than those of the classical QZ method, while the residuals of the eigenpairs are comparable.
引用
下载
收藏
页码:3 / 19
页数:17
相关论文
共 50 条
  • [1] A symmetric structure-preserving FQR algorithm for linear response eigenvalue problems
    Li, Tiexiang
    Li, Ren-Cang
    Lin, Wen-Wei
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 520 : 191 - 214
  • [2] SOLVING A STRUCTURED QUADRATIC EIGENVALUE PROBLEM BY A STRUCTURE-PRESERVING DOUBLING ALGORITHM
    Guo, Chun-Hua
    Lin, Wen-Wei
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2010, 31 (05) : 2784 - 2801
  • [3] A structure-preserving method for solving the complex inverted perpendicular-Hamiltonian eigenvalue problem
    Tian, Heng
    Lyu, Xing-Long
    Li, Tiexiang
    ANNALS OF MATHEMATICAL SCIENCES AND APPLICATIONS, 2021, 6 (02) : 201 - 226
  • [4] Structure-Preserving Model-Reduction of Dissipative Hamiltonian Systems
    Babak Maboudi Afkham
    Jan S. Hesthaven
    Journal of Scientific Computing, 2019, 81 : 3 - 21
  • [5] Structure-Preserving Model-Reduction of Dissipative Hamiltonian Systems
    Afkham, Babak Maboudi
    Hesthaven, Jan S.
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 81 (01) : 3 - 21
  • [6] A structure-preserving Jacobi algorithm for quaternion Hermitian eigenvalue problems
    Ma, Ru-Ru
    Jia, Zhi-Gang
    Bai, Zheng-Jian
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (03) : 809 - 820
  • [7] An explicit structure-preserving algorithm for the nonlinear fractional Hamiltonian wave equation
    Fu, Yayun
    Cai, Wenjun
    Wang, Yushun
    APPLIED MATHEMATICS LETTERS, 2020, 102
  • [8] STABILITY RADII FOR LINEAR HAMILTONIAN SYSTEMS WITH DISSIPATION UNDER STRUCTURE-PRESERVING PERTURBATIONS
    Mehl, Christian
    Mehrmann, Volker
    Sharma, Punit
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2016, 37 (04) : 1625 - 1654
  • [9] Structure-preserving stabilization of Hamiltonian control systems
    Abeber, H.
    Katzschmann, M.
    Systems and Control Letters, 1994, 22 (04): : 281 - 285
  • [10] A structure-preserving algorithm for linear systems with circulant pentadiagonal coefficient matrices
    Qiong-Xiang Kong
    Ji-Teng Jia
    Journal of Mathematical Chemistry, 2015, 53 : 1617 - 1633