Software Defect Prediction Based on Cost-Sensitive Dictionary Learning

被引:8
|
作者
Wan, Hongyan [1 ]
Wu, Guoqing [1 ]
Yu, Mali [2 ]
Yuan, Mengting [1 ]
机构
[1] Wuhan Univ, Sch Comp Sci, Wuhan 430072, Hubei, Peoples R China
[2] Jiujiang Univ, Sch Informat Sci & Technol, Jiujiang 332005, Peoples R China
关键词
Software defect prediction; dictionary learning; cost-sensitive; bilevel optimization; sparse coding; SPARSE REPRESENTATIONS; NEURAL-NETWORKS; QUALITY;
D O I
10.1142/S0218194019500384
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Software defect prediction technology has been widely used in improving the quality of software system. Most real software defect datasets tend to have fewer defective modules than defective-free modules. Highly class-imbalanced data typically make accurate predictions difficult. The imbalanced nature of software defect datasets makes the prediction model classifying a defective module as a defective-free one easily. As there exists the similarity during the different software modules, one module can be represented by the sparse representation coefficients over the pre-defined dictionary which consists of historical software defect datasets. In this study, we make use of dictionary learning method to predict software defect. We optimize the classifier parameters and the dictionary atoms iteratively, to ensure that the extracted features (sparse representation) are optimal for the trained classifier. We prove the optimal condition of the elastic net which is used to solve the sparse coding coefficients and the regularity of the elastic net solution. Due to the reason that the misclassification of defective modules generally incurs much higher cost risk than the misclassification of defective-free ones, we take the different misclassification costs into account, increasing the punishment on misclassification defective modules in the procedure of dictionary learning, making the classification inclining to classify a module as a defective one. Thus, we propose a cost-sensitive software defect prediction method using dictionary learning (CSDL). Experimental results on the 10 class-imbalance datasets of NASA show that our method is more effective than several typical state-of-the-art defect prediction methods.
引用
收藏
页码:1219 / 1243
页数:25
相关论文
共 50 条
  • [21] Cost-sensitive learning based on Bregman divergences
    Santos-Rodriguez, Raul
    Guerrero-Curieses, Alicia
    Alaiz-Rodriguez, Rocio
    Cid-Sueiro, Jesus
    MACHINE LEARNING, 2009, 76 (2-3) : 271 - 285
  • [22] Cost-sensitive learning based on Bregman divergences
    Raúl Santos-Rodríguez
    Alicia Guerrero-Curieses
    Rocío Alaiz-Rodríguez
    Jesús Cid-Sueiro
    Machine Learning, 2009, 76 : 271 - 285
  • [23] Cost-Sensitive Learning Based on Bregman Divergences
    Santos-Rodriguez, Raul
    Guerrero-Curieses, Alicia
    Alaiz-Rodriguez, Rocio
    Cid-Sueiro, Jesus
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PT I, 2009, 5781 : 12 - 12
  • [24] A Cost-sensitive Intelligent Prediction Model for Outsourced Software Project Risk
    Zhang, Hongming
    Mo, Xizhu
    Su, Lijun
    Feng, Bin
    Zhang, Xiangzhou
    Hu, Yong
    TWELFTH WUHAN INTERNATIONAL CONFERENCE ON E-BUSINESS, 2013, : 379 - 385
  • [25] Cost-Sensitive Ensemble Learning for Venture Capital Exit Prediction
    Fang, Heng
    Ma, Ding
    2024 16TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND COMPUTING, ICMLC 2024, 2024, : 161 - 167
  • [26] Cost-sensitive Prediction of Airline Delays Using Machine Learning
    Choi, Sun
    Kim, Young Jin
    Briceno, Simon
    Mavris, Dimitri
    2017 IEEE/AIAA 36TH DIGITAL AVIONICS SYSTEMS CONFERENCE (DASC), 2017,
  • [27] Cost-Sensitive Learning Vector Quantization for Financial Distress Prediction
    Chen, Ning
    Vieira, Armando S.
    Duarte, Joao
    Ribeiro, Bernardete
    Neves, Joao C.
    PROGRESS IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2009, 5816 : 374 - +
  • [28] Cost-Sensitive Learning to Rank
    McBride, Ryan
    Wang, Ke
    Ren, Zhouyang
    Li, Wenyuan
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 4570 - 4577
  • [29] Active Cost-Sensitive Learning
    Margineantu, Dragos D.
    19TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI-05), 2005, : 1622 - 1623
  • [30] Exploring Cost-Sensitive Learning in Domain Based Protein-Protein Interaction Prediction
    Guo, Weizhao
    Hu, Yong
    Liu, Mei
    Yin, Jian
    Xie, Kang
    Yang, Xiaobo
    SIXTH INTERNATIONAL SYMPOSIUM ON NEURAL NETWORKS (ISNN 2009), 2009, 56 : 175 - +