Cost-Sensitive Ensemble Learning for Venture Capital Exit Prediction

被引:0
|
作者
Fang, Heng [1 ]
Ma, Ding [1 ]
机构
[1] Wuhan Univ Technol, Sch Econ, Wuhan, Peoples R China
基金
中国国家自然科学基金;
关键词
cost-sensitive learning; ensemble learning; VC exit forecasting; SHAP analysis; MODEL;
D O I
10.1145/3651671.3651741
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This study presents a methodologically robust framework aimed at refining the precision of Venture Capital (VC) exit prediction. Focused on addressing the inherent data imbalance in VC exit forecasting, our approach strategically integrates both data-level and algorithm-level methodologies. Data-level methods encompass data sampling and cost-sensitive learning to mitigate class imbalance, while algorithm-level techniques employ Stacking and Cascading strategies to alleviate bias towards the majority class. The research specifically aims to forecast VC exits within the Chinese landscape through Initial Public Offering (IPO) or Merger and Acquisition (M&A) events spanning the years 2014 to 2017, with a forecasting horizon extending into the subsequent four years. Our findings highlight that an optimal algorithmic fusion of cost-sensitive learning with a Stacking Classifier outperforms traditional models such as Logistic Regression, Extra Tree, XGBoost, and Random Forest. This optimized approach achieves a superior recall rate of 81.9% coupled with an F2-score of 80.8%. Utilizing SHAP (Shapley Additive Explanations) analysis, we delve into the significance of explanatory features, elucidating the key factors influencing VC exit determinations. This study underscores the efficacy of employing cost-sensitive learning methods and resampling techniques in conjunction with ensemble learning to enhance the accuracy of VC exit forecasting. The insights provided serve as valuable references for practitioners involved in the management of VC projects, emphasizing the importance of robust methodologies in predictive modeling.
引用
收藏
页码:161 / 167
页数:7
相关论文
共 50 条
  • [1] Cost-sensitive stacking ensemble learning for company financial distress prediction
    Wang S.
    Chi G.
    Expert Systems with Applications, 2024, 255
  • [2] Breast cancer recurrence prediction with ensemble methods and cost-sensitive learning
    Yang, Pei-Tse
    Wu, Wen-Shuo
    Wu, Chia-Chun
    Shih, Yi-Nuo
    Hsieh, Chung-Ho
    Hsu, Jia-Lien
    OPEN MEDICINE, 2021, 16 (01): : 754 - 768
  • [3] Cost-sensitive ensemble learning: a unifying framework
    Petrides, George
    Verbeke, Wouter
    DATA MINING AND KNOWLEDGE DISCOVERY, 2022, 36 (01) : 1 - 28
  • [4] Cost-sensitive ensemble learning: a unifying framework
    George Petrides
    Wouter Verbeke
    Data Mining and Knowledge Discovery, 2022, 36 : 1 - 28
  • [5] A hybrid cost-sensitive ensemble for heart disease prediction
    Qi Zhenya
    Zhang, Zuoru
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2021, 21 (01)
  • [6] A hybrid cost-sensitive ensemble for heart disease prediction
    Qi Zhenya
    Zuoru Zhang
    BMC Medical Informatics and Decision Making, 21
  • [7] Cost-Sensitive Ensemble Learning for Highly Imbalanced Classification
    Johnson, Justin M.
    Khoshgoftaar, Taghi M.
    2022 21ST IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, ICMLA, 2022, : 1427 - 1434
  • [8] Neighbor cleaning learning based cost-sensitive ensemble learning approach for software defect prediction
    Li, Li
    Su, Renjia
    Zhao, Xin
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2024, 36 (12):
  • [9] Ensemble of Cost-Sensitive Hypernetworks for Class-Imbalance Learning
    Wang, Jin
    Huang, Ping-li
    Sun, Kai-wei
    Cao, Bao-lin
    Zhao, Rui
    2013 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC 2013), 2013, : 1883 - 1888
  • [10] Cost-Sensitive Learning
    Zhou, Zlii-Hua
    MODELING DECISIONS FOR ARTIFICIAL INTELLIGENCE, MDAI 2011, 2011, 6820 : 17 - 18