Cost-Sensitive Ensemble Learning for Venture Capital Exit Prediction

被引:0
|
作者
Fang, Heng [1 ]
Ma, Ding [1 ]
机构
[1] Wuhan Univ Technol, Sch Econ, Wuhan, Peoples R China
基金
中国国家自然科学基金;
关键词
cost-sensitive learning; ensemble learning; VC exit forecasting; SHAP analysis; MODEL;
D O I
10.1145/3651671.3651741
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This study presents a methodologically robust framework aimed at refining the precision of Venture Capital (VC) exit prediction. Focused on addressing the inherent data imbalance in VC exit forecasting, our approach strategically integrates both data-level and algorithm-level methodologies. Data-level methods encompass data sampling and cost-sensitive learning to mitigate class imbalance, while algorithm-level techniques employ Stacking and Cascading strategies to alleviate bias towards the majority class. The research specifically aims to forecast VC exits within the Chinese landscape through Initial Public Offering (IPO) or Merger and Acquisition (M&A) events spanning the years 2014 to 2017, with a forecasting horizon extending into the subsequent four years. Our findings highlight that an optimal algorithmic fusion of cost-sensitive learning with a Stacking Classifier outperforms traditional models such as Logistic Regression, Extra Tree, XGBoost, and Random Forest. This optimized approach achieves a superior recall rate of 81.9% coupled with an F2-score of 80.8%. Utilizing SHAP (Shapley Additive Explanations) analysis, we delve into the significance of explanatory features, elucidating the key factors influencing VC exit determinations. This study underscores the efficacy of employing cost-sensitive learning methods and resampling techniques in conjunction with ensemble learning to enhance the accuracy of VC exit forecasting. The insights provided serve as valuable references for practitioners involved in the management of VC projects, emphasizing the importance of robust methodologies in predictive modeling.
引用
收藏
页码:161 / 167
页数:7
相关论文
共 50 条
  • [21] Evolutionary Cost-Sensitive Ensemble for Malware Detection
    Krawczyk, Bartosz
    Wozniak, Michal
    INTERNATIONAL JOINT CONFERENCE SOCO'14-CISIS'14-ICEUTE'14, 2014, 299 : 433 - 442
  • [22] An Ensemble Cost-Sensitive One-Class Learning Framework for Malware Detection
    Liu, Jia-Chen
    Song, Jian-Feng
    Miao, Qi-Guang
    Cao, Ying
    Quan, Yi-Ning
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2015, 29 (05)
  • [23] Cost-sensitive ensemble learning algorithm for multi-label classification problems
    Fu, Z.-L. (fzliang@netease.com), 1600, Science Press (40):
  • [24] Two-Stage Cost-Sensitive Learning for Software Defect Prediction
    Liu, Mingxia
    Miao, Linsong
    Zhang, Daoqiang
    IEEE TRANSACTIONS ON RELIABILITY, 2014, 63 (02) : 676 - 686
  • [25] Instance-dependent misclassification cost-sensitive learning for default prediction
    Xing, Jin
    Chi, Guotai
    Pan, Ancheng
    RESEARCH IN INTERNATIONAL BUSINESS AND FINANCE, 2024, 69
  • [26] Active Learning for Cost-Sensitive Classification
    Krishnamurthy, Akshay
    Agarwal, Alekh
    Huang, Tzu-Kuo
    Daume, Hal, III
    Langford, John
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [27] Cost-sensitive learning of SVM for ranking
    Xu, Jun
    Cao, Yunbo
    Li, Hang
    Huang, Yalou
    MACHINE LEARNING: ECML 2006, PROCEEDINGS, 2006, 4212 : 833 - 840
  • [28] Designing cost-sensitive ensemble-genetic approach
    Krawczyk B.
    Woźniak M.
    Advances in Intelligent and Soft Computing, 2011, 102 : 227 - 234
  • [29] Cost-sensitive selection of variables by ensemble of model sequences
    Donghui Yan
    Zhiwei Qin
    Songxiang Gu
    Haiping Xu
    Ming Shao
    Knowledge and Information Systems, 2021, 63 : 1069 - 1092
  • [30] A Cost-sensitive Ensemble Classifier for Breast Cancer Classification
    Krawczyk, Bartosz
    Schaefer, Gerald
    Wozniak, Michal
    2013 IEEE 8TH INTERNATIONAL SYMPOSIUM ON APPLIED COMPUTATIONAL INTELLIGENCE AND INFORMATICS (SACI 2013), 2013, : 427 - 430