Incomplete and noisy network data as a percolation process

被引:11
|
作者
Stumpf, Michael P. H. [1 ,2 ]
Wiuf, Carsten [1 ,3 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Div Mol Biosci, Ctr Bioinformat, London SW7 2AZ, England
[2] Univ London Imperial Coll Sci Technol & Med, Inst Math Sci, London SW7 2AZ, England
[3] Univ Aarhus, Bioinformat Res Ctr, DK-8000 Aarhus C, Denmark
基金
英国生物技术与生命科学研究理事会;
关键词
complex networks; random graphs; protein interaction networks; sampling problems; PROTEIN-INTERACTION DATA; SCALE-FREE; YEAST; COMPLEXES; GRAPHS; SIZE;
D O I
10.1098/rsif.2010.0044
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We discuss the ramifications of noisy and incomplete observations of network data on the existence of a giant connected component (GCC). The existence of a GCC in a random graph can be described in terms of a percolation process, and building on general results for classes of random graphs with specified degree distributions we derive percolation thresholds above which GCCs exist. We show that sampling and noise can have a profound effect on the perceived existence of a GCC and find that both processes can destroy it. We also show that the absence of a GCC puts a theoretical upper bound on the false-positive rate and relate our percolation analysis to experimental protein-protein interaction data.
引用
收藏
页码:1411 / 1419
页数:9
相关论文
共 50 条
  • [1] Inferences from noisy and incomplete biological network data
    Stumpf, Michael P. H.
    RECENT PROGRESS IN COMPUTATIONAL SCIENCES AND ENGINEERING, VOLS 7A AND 7B, 2006, 7A-B : 764 - 767
  • [2] Autonomous inference of complex network dynamics from incomplete and noisy data
    Gao, Ting-Ting
    Yan, Gang
    NATURE COMPUTATIONAL SCIENCE, 2022, 2 (03): : 160 - 168
  • [3] Autonomous inference of complex network dynamics from incomplete and noisy data
    Ting-Ting Gao
    Gang Yan
    Nature Computational Science, 2022, 2 : 160 - 168
  • [4] Publisher Correction: Autonomous inference of complex network dynamics from incomplete and noisy data
    Ting-Ting Gao
    Gang Yan
    Nature Computational Science, 2022, 2 : 343 - 343
  • [5] Mixtures of regression models with incomplete and noisy data
    Jung, Byoung Cheol
    Cheon, Sooyoung
    Lim, Hwa Kyung
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2018, 47 (02) : 444 - 463
  • [6] Hyperspectral Unmixing from Incomplete and Noisy Data
    Montag, Martin J.
    Stephani, Henrike
    JOURNAL OF IMAGING, 2016, 2 (01)
  • [7] Unsupervised record matching with noisy and incomplete data
    van Gennip Y.
    Hunter B.
    Ma A.
    Moyer D.
    de Vera R.
    Bertozzi A.L.
    van Gennip, Yves (y.vangennip@nottingham.ac.uk), 2018, Springer Science and Business Media Deutschland GmbH (06) : 109 - 129
  • [8] Robust Sparse Representation for Incomplete and Noisy Data
    Shi, Jiarong
    Zheng, Xiuyun
    Yang, Wei
    INFORMATION, 2015, 6 (03): : 287 - 299
  • [9] STATISTICAL-ANALYSIS OF NOISY AND INCOMPLETE FAILURE DATA
    DEY, KA
    PROCEEDINGS ANNUAL RELIABILITY AND MAINTAINABILITY SYMPOSIUM, 1982, (NSYM): : 246 - 251
  • [10] Efficient Graph Learning From Noisy and Incomplete Data
    Berger, Peter
    Hannak, Gabor
    Matz, Gerald
    IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, 2020, 6 : 105 - 119