Hyperspectral Unmixing from Incomplete and Noisy Data

被引:4
|
作者
Montag, Martin J. [1 ,2 ]
Stephani, Henrike [2 ]
机构
[1] Univ Kaiserslautern, Dept Math, Postfach 3049, D-67653 Kaiserslautern, Germany
[2] Fraunhofer ITWM, Fraunhofer Pl 1, D-67663 Kaiserslautern, Germany
关键词
hyperspectral images; spectral unmixing; restoration; inpainting; total variation (TV) regularization; convex optimization; dual approaches;
D O I
10.3390/jimaging2010007
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
In hyperspectral images, once the pure spectra of the materials are known, hyperspectral unmixing seeks to find their relative abundances throughout the scene. We present a novel variational model for hyperspectral unmixing from incomplete noisy data, which combines a spatial regularity prior with the knowledge of the pure spectra. The material abundances are found by minimizing the resulting convex functional with a primal dual algorithm. This extends least squares unmixing to the case of incomplete data, by using total variation regularization and masking of unknown data. Numerical tests with artificial and real-world data demonstrate that our method successfully recovers the true mixture coefficients from heavily-corrupted data.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] A Novel NMF Guided for Hyperspectral Unmixing From Incomplete and Noisy Data
    Dong, Le
    Lu, Xiaoqiang
    Liu, Ganchao
    Yuan, Yuan
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [2] Unmixing hyperspectral data
    Parra, L
    Spence, C
    Sajda, P
    Ziehe, A
    Müller, KR
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 12, 2000, 12 : 942 - 948
  • [3] Sparse Unmixing of Hyperspectral Data
    Iordache, Marian-Daniel
    Bioucas-Dias, Jose M.
    Plaza, Antonio
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (06): : 2014 - 2039
  • [4] Dictionary Learning for Noisy and Incomplete Hyperspectral Images
    Xing, Zhengming
    Zhou, Mingyuan
    Castrodad, Alexey
    Sapiro, Guillermo
    Carin, Lawrence
    [J]. SIAM JOURNAL ON IMAGING SCIENCES, 2012, 5 (01): : 33 - 56
  • [5] On the unmixing of MEx/OMEGA hyperspectral data
    Themelis, Konstantinos E.
    Schmidt, Frederic
    Sykioti, Olga
    Rontogiannis, Athanasios A.
    Koutroumbas, Konstantinos D.
    Daglis, Ioannis A.
    [J]. PLANETARY AND SPACE SCIENCE, 2012, 68 (01) : 34 - 41
  • [6] An Overview on Linear Unmixing of Hyperspectral Data
    Wei, Jiaojiao
    Wang, Xiaofei
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [7] COLLABORATIVE SPARSE UNMIXING OF HYPERSPECTRAL DATA
    Iordache, Marian-Daniel
    Bioucas-Dias, Jose M.
    Plaza, Antonio
    [J]. 2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 7488 - 7491
  • [8] ROBUST SPARSE UNMIXING OF HYPERSPECTRAL DATA
    Ma, Yang
    Li, Chang
    Ma, Jiayi
    [J]. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 6193 - 6196
  • [9] Spectral Variability in Hyperspectral Data Unmixing
    Borsoi, Ricardo
    Imbiriba, Tales
    Bermudez, Jose Carlos
    Richard, Cedric
    Chanussot, Jocelyn
    Drumetz, Lucas
    Tourneret, Jean-Yves
    Zare, Alina
    Jutten, Christian
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2021, 9 (04) : 223 - 270
  • [10] PARALLEL SPARSE UNMIXING OF HYPERSPECTRAL DATA
    Rodriguez Alves, Jose M.
    Nascimento, Jose M. P.
    Bioucas-Dias, Jose M.
    Plaza, Antonio
    Silva, Vitor
    [J]. 2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 1446 - 1449