Detection of prostate cancer with multiparametric MRI utilizing the anatomic structure of the prostate

被引:12
|
作者
Jin, Jin [1 ]
Zhang, Lin [1 ]
Leng, Ethan [2 ]
Metzger, Gregory J. [2 ]
Koopmeiners, Joseph S. [1 ]
机构
[1] Univ Minnesota, Sch Publ Hlth, Div Biostat, Minneapolis, MN 55455 USA
[2] Univ Minnesota, Dept Radiol, Ctr Magnet Resonance Res, Minneapolis, MN 55455 USA
关键词
Bayesian classifier; multiparametric magnetic resonance imaging; prostate cancer; spatial classifier; voxel-wise classification; LINEAR DISCRIMINANT-ANALYSIS; CLASSIFICATION; SEGMENTATION; REGRESSION; MODELS;
D O I
10.1002/sim.7810
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Multiparametric magnetic resonance imaging (mpMRI), which combines traditional anatomic and newer quantitative MRI methods, has been shown to result in improved voxel-wise classification of prostate cancer as compared with any single MRI parameter. While these results are promising, substantial heterogeneity in the mpMRI parameter values and voxel-wise prostate cancer risk has been observed both between and within regions of the prostate. This suggests that classification of prostate cancer can potentially be improved by incorporating structural information into the classifier. In this paper, we propose a novel voxel-wise classifier of prostate cancer that accounts for the anatomic structure of the prostate by Bayesian hierarchical modeling, which can be combined with post hoc spatial Gaussian kernel smoothing to account for residual spatial correlation. Our proposed classifier results in significantly improved area under the ROC curve (0.822 vs 0.729, P < .001) and sensitivity corresponding to 90% specificity (0.599 vs 0.429, P < .001), compared with a baseline model that does not account for the anatomic structure of the prostate. Furthermore, the classifier can also be applied on voxels with missing mpMRI parameters, resulting in similar performance, which is an important practical consideration that cannot be easily accommodated using regression-based classifiers. In addition, our classifier achieved high computational efficiency with a closed-form solution for the posterior predictive cancer probability.
引用
收藏
页码:3214 / 3229
页数:16
相关论文
共 50 条
  • [1] Multiparametric MRI of the Prostate: Method for Early Detection of Prostate Cancer?
    Schlemmer, H-P.
    ROFO-FORTSCHRITTE AUF DEM GEBIET DER RONTGENSTRAHLEN UND DER BILDGEBENDEN VERFAHREN, 2010, 182 (12): : 1067 - 1075
  • [2] Multiparametric MRI in detection and staging of prostate cancer
    Boesen, Lars
    DANISH MEDICAL JOURNAL, 2017, 64 (02):
  • [3] Multiparametric MRI Versus Multiparametric US in the Detection of Prostate Cancer
    Drudi, Francesco M.
    Cantisani, Vito
    Angelini, Flavia
    Ciccariello, Mauro
    Messineo, Daniela
    Ettorre, Evaristo
    Liberatore, Mauro
    Scialpi, Michele
    ANTICANCER RESEARCH, 2019, 39 (06) : 3101 - 3110
  • [4] Multiparametric MRI in Prostate Cancer
    Esen, Tarik
    Turkbey, Baris
    Patel, Anup
    Futterer, Jurgen
    BIOMED RESEARCH INTERNATIONAL, 2014, 2014
  • [5] Multiparametric MRI in the Detection of Clinically Significant Prostate Cancer
    Futterer, Jurgen J.
    KOREAN JOURNAL OF RADIOLOGY, 2017, 18 (04) : 597 - 606
  • [6] Multiparametric MRI of the Prostate: Beyond Cancer Detection and Staging
    Costa, Daniel N.
    RADIOLOGY, 2021, 299 (03) : 624 - 625
  • [7] Automated detection and grading of prostate cancer in multiparametric MRI
    Kharote, Prashant Ramesh
    Sankhe, Manoj S.
    Patkar, Deepak
    INTERNATIONAL JOURNAL OF BIOMEDICAL ENGINEERING AND TECHNOLOGY, 2022, 40 (04) : 372 - 395
  • [8] DETECTION OF CLINICALLY SIGNIFICANT PROSTATE CANCER: A COMPARISON OF MULTIPARAMETRIC MRI AND PROSTATE BIOPSY
    Porpiglia, Francesco
    Fiori, Cristian
    Mele, Fabrizio
    Manfredi, Matteo
    Grande, Susanna
    Cossu, Marco
    Cattaneo, Giovanni
    Bollito, Enrico
    Papotti, Mauro
    Russo, Filippo
    Regge, Daniele
    ANTICANCER RESEARCH, 2013, 33 (05) : 2324 - 2325
  • [9] Role of multiparametric prostate MRI in the management of prostate cancer
    O'Connor, Luke P.
    Lebastchi, Amir H.
    Horuz, Rahim
    Rastinehad, Ardeshir R.
    Siddiqui, M. Minhaj
    Grummet, Jeremy
    Kastner, Christof
    Ahmed, Hashim U.
    Pinto, Peter A.
    Turkbey, Baris
    WORLD JOURNAL OF UROLOGY, 2021, 39 (03) : 651 - 659
  • [10] Role of multiparametric prostate MRI in the management of prostate cancer
    Luke P. O’Connor
    Amir H. Lebastchi
    Rahim Horuz
    Ardeshir R. Rastinehad
    M. Minhaj Siddiqui
    Jeremy Grummet
    Christof Kastner
    Hashim U. Ahmed
    Peter A. Pinto
    Baris Turkbey
    World Journal of Urology, 2021, 39 : 651 - 659