Automated detection and grading of prostate cancer in multiparametric MRI

被引:0
|
作者
Kharote, Prashant Ramesh [1 ]
Sankhe, Manoj S. [1 ]
Patkar, Deepak [2 ]
机构
[1] NMIMS Univ, Elect & Telecommun Dept, MPSTME, Mumbai, India
[2] Nanavati Super Specialty Hosp, Imaging Sect, Mumbai, India
关键词
prostate; segmentation; deformable model; multiparametric magnetic resonance imaging; MPMRI; atlas-based segmentation; active contour model; deep learning; PIRADS; prostate cancer; classifier; MAGNETIC-RESONANCE; PI-RADS; SEGMENTATION; CLASSIFICATION; IMAGES; ATLAS; DIFFUSION; DIAGNOSIS;
D O I
10.1504/IJBET.2022.128088
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Prostate cancer is a major health issue worldwide and automatic segmentation of prostate from magnetic resonance imaging (MRI) is crucial task in image guided intervention. The objective of this paper is to develop a transparent and meticulous feature learning framework for prostate cancer detection and grading of prostate cancer using multiparametric magnetic resonance imaging (MPMRI). Prostate cancer is confirmed using approved rules of prostate cancer diagnosis from MPMRI data. The clustering is done in apparent diffusion coefficient (ADC) and diffusion weighted images (DWI) to obtain a probabilistic map which confirms cancerous region. The performance of proposed work is enormously tested on the dataset that contains T2Weighted, DWI and ADC map images of 236 subjects. In this study a total of 218 regions were used for analysis which includes 53 non-cancerous regions and 165 cancerous lesions. We have obtained tumour detection accuracy of 93.2% and AUC of 0.94 by using random forest classifier. The results yield by proposed algorithm is validated by two experienced radiologists.
引用
收藏
页码:372 / 395
页数:25
相关论文
共 50 条
  • [1] Multiparametric MRI maps for detection and grading of dominant prostate tumors
    Moradi, Mehdi
    Salcudean, Septimiu E.
    Chang, Silvia D.
    Jones, Edward C.
    Buchan, Nicholas
    Casey, Rowan G.
    Goldenberg, S. Larry
    Kozlowski, Piotr
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2012, 35 (06) : 1403 - 1413
  • [2] DETECTION AND GRADING OF DOMINANT PROSTATE TUMORS: MULTIPARAMETRIC MRI MAPS
    Ding, Xiaobo
    Chen, Liang
    Tong, Dan
    Jin, Gang
    [J]. JOURNAL OF ENDOUROLOGY, 2012, 26 : A410 - A410
  • [3] Detection and Grading of Dominant Prostate Tumors: Multiparametric MRI Maps
    Ding, X.
    Chen, L.
    Tong, D.
    Jin, G.
    [J]. UROLOGY, 2012, 80 (03) : S286 - S286
  • [4] Multiparametric MRI Versus Multiparametric US in the Detection of Prostate Cancer
    Drudi, Francesco M.
    Cantisani, Vito
    Angelini, Flavia
    Ciccariello, Mauro
    Messineo, Daniela
    Ettorre, Evaristo
    Liberatore, Mauro
    Scialpi, Michele
    [J]. ANTICANCER RESEARCH, 2019, 39 (06) : 3101 - 3110
  • [5] Multiparametric MRI in detection and staging of prostate cancer
    Boesen, Lars
    [J]. DANISH MEDICAL JOURNAL, 2017, 64 (02):
  • [6] Combined Multiparametric MRI and Targeted Biopsies Improve Anterior Prostate Cancer Detection, Staging, and Grading
    Ouzzane, Adil
    Puech, Philippe
    Lemaitre, Laurent
    Leroy, Xavier
    Nevoux, Pierre
    Betrouni, Nacim
    Haber, Georges-Pascal
    Villers, Arnauld
    [J]. UROLOGY, 2011, 78 (06) : 1356 - 1362
  • [7] Multiparametric MRI of the Prostate: Method for Early Detection of Prostate Cancer?
    Schlemmer, H-P.
    [J]. ROFO-FORTSCHRITTE AUF DEM GEBIET DER RONTGENSTRAHLEN UND DER BILDGEBENDEN VERFAHREN, 2010, 182 (12): : 1067 - 1075
  • [8] Multiparametric MRI in the Detection of Clinically Significant Prostate Cancer
    Futterer, Jurgen J.
    [J]. KOREAN JOURNAL OF RADIOLOGY, 2017, 18 (04) : 597 - 606
  • [9] Multiparametric MRI of the Prostate: Beyond Cancer Detection and Staging
    Costa, Daniel N.
    [J]. RADIOLOGY, 2021, 299 (03) : 624 - 625
  • [10] A Grading System for the Assessment of Risk of Extraprostatic Extension of Prostate Cancer at Multiparametric MRI
    Mehralivand, Sherif
    Shih, Joanna H.
    Harmon, Stephanie
    Smith, Clayton
    Bloom, Jonathan
    Czarniecki, Marcin
    Gold, Samuel
    Hale, Graham
    Rayn, Kareem
    Merino, Maria J.
    Wood, Bradford J.
    Pinto, Peter A.
    Choyke, Peter L.
    Turkbey, Baris
    [J]. RADIOLOGY, 2019, 290 (03) : 709 - 719