Detection of prostate cancer with multiparametric MRI utilizing the anatomic structure of the prostate

被引:12
|
作者
Jin, Jin [1 ]
Zhang, Lin [1 ]
Leng, Ethan [2 ]
Metzger, Gregory J. [2 ]
Koopmeiners, Joseph S. [1 ]
机构
[1] Univ Minnesota, Sch Publ Hlth, Div Biostat, Minneapolis, MN 55455 USA
[2] Univ Minnesota, Dept Radiol, Ctr Magnet Resonance Res, Minneapolis, MN 55455 USA
关键词
Bayesian classifier; multiparametric magnetic resonance imaging; prostate cancer; spatial classifier; voxel-wise classification; LINEAR DISCRIMINANT-ANALYSIS; CLASSIFICATION; SEGMENTATION; REGRESSION; MODELS;
D O I
10.1002/sim.7810
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Multiparametric magnetic resonance imaging (mpMRI), which combines traditional anatomic and newer quantitative MRI methods, has been shown to result in improved voxel-wise classification of prostate cancer as compared with any single MRI parameter. While these results are promising, substantial heterogeneity in the mpMRI parameter values and voxel-wise prostate cancer risk has been observed both between and within regions of the prostate. This suggests that classification of prostate cancer can potentially be improved by incorporating structural information into the classifier. In this paper, we propose a novel voxel-wise classifier of prostate cancer that accounts for the anatomic structure of the prostate by Bayesian hierarchical modeling, which can be combined with post hoc spatial Gaussian kernel smoothing to account for residual spatial correlation. Our proposed classifier results in significantly improved area under the ROC curve (0.822 vs 0.729, P < .001) and sensitivity corresponding to 90% specificity (0.599 vs 0.429, P < .001), compared with a baseline model that does not account for the anatomic structure of the prostate. Furthermore, the classifier can also be applied on voxels with missing mpMRI parameters, resulting in similar performance, which is an important practical consideration that cannot be easily accommodated using regression-based classifiers. In addition, our classifier achieved high computational efficiency with a closed-form solution for the posterior predictive cancer probability.
引用
收藏
页码:3214 / 3229
页数:16
相关论文
共 50 条
  • [31] Multiparametric MRI: Local Staging of Prostate Cancer
    F. A. Carpagnano
    L. Eusebi
    U. Tupputi
    V. Testini
    W. Giannubilo
    F. Bartelli
    G. Guglielmi
    Current Radiology Reports, 8
  • [32] Multiparametric MRI of Prostate Cancer: Recent Advances
    Elena Ventrella
    Laura Eusebi
    Francesca Anna Carpagnano
    Francesco Bartelli
    Luigi Cormio
    Giuseppe Guglielmi
    Current Radiology Reports, 8
  • [33] Prostate cancer biomarkers and multiparametric MRI: is there a role for both in prostate cancer management?
    Saltman, Anna
    Zegar, Joseph
    Haj-Hamed, Monzer
    Verma, Sadhna
    Sidana, Abhinav
    THERAPEUTIC ADVANCES IN UROLOGY, 2021, 13
  • [34] Multiparametric MRI and radiomics in prostate cancer: a review
    Yu Sun
    Hayley M. Reynolds
    Bimal Parameswaran
    Darren Wraith
    Mary E. Finnegan
    Scott Williams
    Annette Haworth
    Australasian Physical & Engineering Sciences in Medicine, 2019, 42 : 3 - 25
  • [35] Multiparametric MRI of Prostate Cancer: Recent Advances
    Ventrella, Elena
    Eusebi, Laura
    Carpagnano, Francesca Anna
    Bartelli, Francesco
    Cormio, Luigi
    Guglielmi, Giuseppe
    CURRENT RADIOLOGY REPORTS, 2020, 8 (10)
  • [36] Multiparametric MRI for Prostate Cancer Seeing Is Believing
    Warlick, Christopher A.
    CANCER, 2014, 120 (18) : 2806 - 2809
  • [37] Multiparametric MRI and radiomics in prostate cancer: a review
    Sun, Yu
    Reynolds, Hayley M.
    Parameswaran, Bimal
    Wraith, Darren
    Finnegan, Mary E.
    Williams, Scott
    Haworth, Annette
    AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE, 2019, 42 (01) : 3 - 25
  • [38] Multiparametric-MRI in diagnosis of prostate cancer
    Ghai, Sangeet
    Haider, Masoom A.
    INDIAN JOURNAL OF UROLOGY, 2015, 31 (03) : 194 - 201
  • [39] Multiparametric MRI: Local Staging of Prostate Cancer
    Carpagnano, F. A.
    Eusebi, L.
    Tupputi, U.
    Testini, V.
    Giannubilo, W.
    Bartelli, F.
    Guglielmi, G.
    CURRENT RADIOLOGY REPORTS, 2020, 8 (12)
  • [40] Multiparametric prostate MRI for prostate cancer diagnosis: is this the beginning of a new era?
    Manfredi, Matteo
    De Luca, Stefano
    Fiori, Cristian
    MINERVA UROLOGICA E NEFROLOGICA, 2017, 69 (06) : 628 - 629