On zonoids whose polars are zonoids

被引:4
|
作者
Lonke, Y [1 ]
机构
[1] Hebrew Univ Jerusalem, Inst Math, IL-91904 Jerusalem, Israel
关键词
D O I
10.1007/BF02773792
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Zonoids whose polars are zonoids cannot have proper faces other than vertices or facets. However, there exist non-smooth zonoids whose polars are zonoids. Examples in R-3 and R-4 are given.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [31] A SOLUTION OF HADWIGER COVERING PROBLEM FOR ZONOIDS
    BOLTJANSKI, VG
    SOLTAN, PS
    COMBINATORICA, 1992, 12 (04) : 381 - 388
  • [32] Ψ2-estimates for linear functionals on zonoids
    Paouris, G
    GEOMETRIC ASPECTS OF FUNCTIONAL ANALYSIS, 2003, 1807 : 211 - 222
  • [33] ZONOIDS AND RELATED CLASSES OF CONVEX-BODIES
    WEIL, W
    MONATSHEFTE FUR MATHEMATIK, 1982, 94 (01): : 73 - 84
  • [34] SOLUTION OF THE SZOKEFALVI-NAGY PROBLEM FOR ZONOIDS
    BALADZE, ED
    DOKLADY AKADEMII NAUK SSSR, 1990, 310 (01): : 11 - 14
  • [35] Reverse Alexandrov-Fenchel inequalities for zonoids
    Boroczky, Karoly J.
    Hug, Daniel
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2022, 24 (08)
  • [36] ON THE ALEKSANDROV-FENCHEL INEQUALITY INVOLVING ZONOIDS
    SCHNEIDER, R
    GEOMETRIAE DEDICATA, 1988, 27 (01) : 113 - 126
  • [37] GENERAL HIGHER ORDER Lp MEAN ZONOIDS
    Langharst, Dylan
    Xi, Dongmeng
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024,
  • [38] STRENGTHENED VOLUME INEQUALITIES FOR Lp ZONOIDS OF EVEN ISOTROPIC MEASURES
    Boroczky, Karoly J.
    Fodor, Ferenc
    Hug, Daniel
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (01) : 505 - 548
  • [39] Affine inequalities for Lp-mixed mean zonoids
    Ma, Tongyi
    Guo, Yuanyuan
    Feng, Yibin
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016, : 1 - 15
  • [40] ZONOIDS WITH MINIMAL VOLUME-PRODUCT - A NEW PROOF
    GORDON, Y
    MEYER, M
    REISNER, S
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 104 (01) : 273 - 276