On zonoids whose polars are zonoids

被引:4
|
作者
Lonke, Y [1 ]
机构
[1] Hebrew Univ Jerusalem, Inst Math, IL-91904 Jerusalem, Israel
关键词
D O I
10.1007/BF02773792
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Zonoids whose polars are zonoids cannot have proper faces other than vertices or facets. However, there exist non-smooth zonoids whose polars are zonoids. Examples in R-3 and R-4 are given.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [21] COMBINATORIAL INTEGRAL GEOMETRY, METRICS, AND ZONOIDS
    AMBARTZUMIAN, RV
    ACTA APPLICANDAE MATHEMATICAE, 1987, 9 (1-2) : 3 - 27
  • [22] Affine inequalities for Lp mean zonoids
    Xi, Dongmeng
    Guo, Lujun
    Leng, Gangsong
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2014, 46 : 367 - 378
  • [23] BLASCHKES PROBLEM OF LOCAL CHARACTERIZATION OF ZONOIDS
    WEIL, W
    ARCHIV DER MATHEMATIK, 1977, 29 (06) : 655 - 659
  • [24] Ising systems, measures on the sphere, and zonoids
    Braides, Andrea
    Chambolle, Antonin
    TUNISIAN JOURNAL OF MATHEMATICS, 2024, 6 (02) : 299 - 319
  • [25] VOLUME INEQUALITIES FOR ORLICZ MEAN ZONOIDS
    Du, Changmin
    Leng, Gangsong
    Xi, Dongmeng
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2014, 17 (04): : 1529 - 1541
  • [26] On the local equatorial characterization of zonoids and intersection bodies
    Nazarov, Fedor
    Ryabogin, Dmitry
    Zvavitch, Artem
    ADVANCES IN MATHEMATICS, 2008, 217 (03) : 1368 - 1380
  • [27] Multivariate Lorenz dominance based on zonoids
    Koshevoy, Gleb A.
    Mosler, Karl
    ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2007, 91 (01) : 57 - 76
  • [28] Two dimensional zonoids and Chebyshev measures
    Bianchini, S
    Cerf, R
    Mariconda, C
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 211 (02) : 512 - 526
  • [29] Multivariate Lorenz dominance based on zonoids
    Gleb A. Koshevoy
    Karl Mosler
    AStA Advances in Statistical Analysis, 2007, 91 : 57 - 76
  • [30] NEW RESULTS ON ZONOIDS AND PROJECTION BODIES
    BOURGAIN, J
    LINDENSTRAUSS, J
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1988, 306 (08): : 377 - 380