On zonoids whose polars are zonoids

被引:4
|
作者
Lonke, Y [1 ]
机构
[1] Hebrew Univ Jerusalem, Inst Math, IL-91904 Jerusalem, Israel
关键词
D O I
10.1007/BF02773792
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Zonoids whose polars are zonoids cannot have proper faces other than vertices or facets. However, there exist non-smooth zonoids whose polars are zonoids. Examples in R-3 and R-4 are given.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [1] ZONOIDS WHOSE POLARS ARE ZONOIDS
    SCHNEIDER, R
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 50 (JUL) : 365 - 368
  • [2] On zonoids whose polars are zonoids
    Yossi Lonke
    Israel Journal of Mathematics, 1997, 102 : 1 - 12
  • [3] Sections and Projections of Lp-Zonoids and Their Polars
    Li, Ai-Jun
    Huang, Qingzhong
    Xi, Dongmeng
    JOURNAL OF GEOMETRIC ANALYSIS, 2018, 28 (01) : 427 - 447
  • [4] Hedgehogs and zonoids
    Martinez-Maure, Y
    ADVANCES IN MATHEMATICS, 2001, 158 (01) : 1 - 17
  • [5] On tameness of zonoids
    Lerario, Antonio
    Mathis, Leo
    JOURNAL OF FUNCTIONAL ANALYSIS, 2022, 282 (04)
  • [6] DECOMPOSITIONS OF ZONOIDS
    Anantharaman, R.
    QUAESTIONES MATHEMATICAE, 2009, 32 (03) : 351 - 361
  • [7] Radon transformations and zonoids
    Sekerin, AB
    MATHEMATICAL NOTES, 1996, 59 (1-2) : 180 - 184
  • [8] AN ILLUMINATION PROBLEM FOR ZONOIDS
    BEZDEK, K
    KISS, G
    MOLLARD, M
    ISRAEL JOURNAL OF MATHEMATICS, 1993, 81 (03) : 265 - 272
  • [9] APPROXIMATION OF ZONOIDS BY ZONOTOPES
    BOURGAIN, J
    LINDENSTRAUSS, J
    MILMAN, V
    ACTA MATHEMATICA, 1989, 162 (1-2) : 73 - 141
  • [10] Zonoids with an equatorial characterization
    Rafik Aramyan
    Applications of Mathematics, 2016, 61 : 413 - 422