Quantum weighted long short-term memory neural network and its application in state degradation trend prediction of rotating machinery

被引:7
|
作者
Li, Feng [1 ,2 ]
Xiang, Wang [1 ]
Wang, Jiaxu [2 ]
Zhou, Xueming [3 ]
Tang, Baoping [4 ]
机构
[1] Sichuan Univ, Sch Mfg Sci & Engn, Chengdu 610065, Sichuan, Peoples R China
[2] Sichuan Univ, Sch Aeronaut & Astronaut, Chengdu 610065, Sichuan, Peoples R China
[3] Chongqing Leap Technol Co Ltd, Chongqing 401120, Peoples R China
[4] Chongqing Univ, State Key Lab Mech Transmiss, Chongqing 400030, Peoples R China
基金
中国国家自然科学基金;
关键词
Quantum weighted long short-term memory neural network (QWLSTMNN); Quantum computation; Wavelet packet energy entropy error; Trend prediction; Rotating machinery;
D O I
10.1016/j.neunet.2018.07.004
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Classical long short-term memory neural network (LSTMNN) generally faces the challenges of poor generalization property and low training efficiency in state degradation trend prediction of rotating machinery. In this paper, a novel quantum neural network called quantum weighted long short-term memory neural network (QWLSTMNN) is proposed. First, quantum bits are introduced into the long short-term memory unit to express network weights and activity values. Then, a new learning algorithm based on quantum phase-shift gate and quantum gradient descent is presented to quickly update the quantum parameters of weight qubits and activity qubits. The above characteristics endow QWLSTMNN with better nonlinear approximation capability, higher generalization property and faster convergence speed than LSTMNN. State degradation trend prediction for rolling bearings demonstrates that higher prediction accuracy and higher computational efficiency can be obtained due to the advantages of QWLSTMNN in terms of nonlinear approximation capability, generalization property and convergence speed. It is believed that the proposed method based on QWLSTMNN is effective for state degradation trend prediction of rotating machinery. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:237 / 248
页数:12
相关论文
共 50 条
  • [21] Short-Term Traffic Prediction Using Long Short-Term Memory Neural Networks
    Abbas, Zainab
    Al-Shishtawy, Ahmad
    Girdzijauskas, Sarunas
    Vlassov, Vladimir
    2018 IEEE INTERNATIONAL CONGRESS ON BIG DATA (IEEE BIGDATA CONGRESS), 2018, : 57 - 65
  • [22] Financial Crisis Prediction Based on Long-Term and Short-Term Memory Neural Network
    Ling, Tang
    Cai, Yinying
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [23] Quantum recurrent encoder-decoder neural network for performance trend prediction of rotating machinery
    Chen, Yong
    Li, Feng
    Wang, Jiaxu
    Tang, Baoping
    Zhou, Xueming
    KNOWLEDGE-BASED SYSTEMS, 2020, 197
  • [24] Sea Clutter Amplitude Prediction Using a Long Short-Term Memory Neural Network
    Ma, Liwen
    Wu, Jiaji
    Zhang, Jinpeng
    Wu, Zhensen
    Jeon, Gwanggil
    Tan, Mingzhou
    Zhang, Yushi
    REMOTE SENSING, 2019, 11 (23)
  • [25] Suspended sediment load prediction using long short-term memory neural network
    Nouar AlDahoul
    Yusuf Essam
    Pavitra Kumar
    Ali Najah Ahmed
    Mohsen Sherif
    Ahmed Sefelnasr
    Ahmed Elshafie
    Scientific Reports, 11
  • [26] Instruction SDC Vulnerability Prediction Using Long Short-Term Memory Neural Network
    Liu, Yunfei
    Li, Jing
    Zhuang, Yi
    ADVANCED DATA MINING AND APPLICATIONS, ADMA 2018, 2018, 11323 : 140 - 149
  • [27] A model for vessel trajectory prediction based on long short-term memory neural network
    Tang H.
    Yin Y.
    Shen H.
    Journal of Marine Engineering and Technology, 2022, 21 (03): : 136 - 145
  • [28] Suspended sediment load prediction using long short-term memory neural network
    AlDahoul, Nouar
    Essam, Yusuf
    Kumar, Pavitra
    Ahmed, Ali Najah
    Sherif, Mohsen
    Sefelnasr, Ahmed
    Elshafie, Ahmed
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [29] Prediction of air pollutant concentrations based on the long short-term memory neural network
    Wu, Zechuan
    Tian, Yuping
    Li, Mingze
    Wang, Bin
    Quan, Ying
    Liu, Jianyang
    JOURNAL OF HAZARDOUS MATERIALS, 2024, 465
  • [30] Air Quality Prediction Based on Neural Network Model of Long Short-term Memory
    Du, Zhehua
    Lin, Xin
    2020 6TH INTERNATIONAL CONFERENCE ON ENERGY MATERIALS AND ENVIRONMENT ENGINEERING, 2020, 508