Financial Crisis Prediction Based on Long-Term and Short-Term Memory Neural Network

被引:0
|
作者
Ling, Tang [1 ]
Cai, Yinying [1 ]
机构
[1] Chongqing Univ Educ, Chongqing 400047, Peoples R China
关键词
Business Process - Business situations - Financial crisis - Goodness of fit - Management ability - Neural-networks - Prediction methods - Prediction-based - Short term memory - Sustainable management;
D O I
10.1155/2022/5728470
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Enterprise financial crisis prediction analysis can predict the business process of enterprises, so that enterprises can take corresponding strategies in time. The financial crisis prediction of listed companies can effectively reflect the business situation, so as to give investors reasonable investment advice. In order to supervise the sustainable management ability of enterprises efficiently and accurately, this paper proposed a financial crisis prediction method based on long-term and short-term memory neural network, so as to provide valuable information for decision-makers. Firstly, the data in the enterprise financial system is analyzed and extracted, and the original data is cleaned and dimensionalized by normalization and feature selection. Then, the long-term and short-term memory neural network is used to build the financial early warning model, and the wolf pack algorithm is used to optimize the initial weight and bias parameters, so as to improve the efficiency of parameter optimization. Finally, the financial data of 20 large- and medium-sized enterprises from 2019 to 2021 are verified and analyzed. The experimental results show that compared with other common machine learning methods, the constructed wolf pack-optimized long-term and short-term memory neural network has the highest prediction performance in terms of root mean square error and goodness of fit, with the goodness of fit reaching 94.2%.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Long short-term memory neural network for glucose prediction
    Carrillo-Moreno, Jaime
    Perez-Gandia, Carmen
    Sendra-Arranz, Rafael
    Garcia-Saez, Gema
    Hernando, M. Elena
    Gutierrez, Alvaro
    [J]. NEURAL COMPUTING & APPLICATIONS, 2021, 33 (09): : 4191 - 4203
  • [2] Long short-term memory neural network for glucose prediction
    Jaime Carrillo-Moreno
    Carmen Pérez-Gandía
    Rafael Sendra-Arranz
    Gema García-Sáez
    M. Elena Hernando
    Álvaro Gutiérrez
    [J]. Neural Computing and Applications, 2021, 33 : 4191 - 4203
  • [3] Long Short-term Memory Neural Network for Network Traffic Prediction
    Zhuo, Qinzheng
    Li, Qianmu
    Yan, Han
    Qi, Yong
    [J]. 2017 12TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND KNOWLEDGE ENGINEERING (IEEE ISKE), 2017,
  • [4] A Convolutional Long Short-Term Memory Neural Network Based Prediction Model
    Tian, Y. H.
    Wu, Q.
    Zhang, Y.
    [J]. INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2020, 15 (05) : 1 - 12
  • [5] Reactive Load Prediction Based on a Long Short-Term Memory Neural Network
    Zhang, Xu
    Wang, Yixian
    Zheng, Yuchuan
    Ding, Ruiting
    Chen, Yunlong
    Wang, Yi
    Cheng, Xueting
    Yue, Shuai
    [J]. IEEE ACCESS, 2020, 8 : 90969 - 90977
  • [6] Predicting the Transition from Short-term to Long-term Memory based on Deep Neural Network
    Shin, Gi-Hwan
    Kweon, Young-Seok
    Lee, Minji
    [J]. 2021 9TH IEEE INTERNATIONAL WINTER CONFERENCE ON BRAIN-COMPUTER INTERFACE (BCI), 2021, : 95 - 99
  • [7] Well performance prediction based on Long Short-Term Memory (LSTM) neural network
    Huang, Ruijie
    Wei, Chenji
    Wang, Baohua
    Yang, Jian
    Xu, Xin
    Wu, Suwei
    Huang, Suqi
    [J]. JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2022, 208
  • [8] Air Quality Prediction Based on Neural Network Model of Long Short-term Memory
    Du, Zhehua
    Lin, Xin
    [J]. 2020 6TH INTERNATIONAL CONFERENCE ON ENERGY MATERIALS AND ENVIRONMENT ENGINEERING, 2020, 508
  • [9] TBM penetration rate prediction based on the long short-term memory neural network
    Gao, Boyang
    Wang, RuiRui
    Lin, Chunjin
    Guo, Xu
    Liu, Bin
    Zhang, Wengang
    [J]. UNDERGROUND SPACE, 2021, 6 (06) : 718 - 731
  • [10] Solar Radiation Prediction Based on Convolution Neural Network and Long Short-Term Memory
    Zhu, Tingting
    Guo, Yiren
    Li, Zhenye
    Wang, Cong
    [J]. ENERGIES, 2021, 14 (24)