Long short-term memory neural network for glucose prediction

被引:0
|
作者
Jaime Carrillo-Moreno
Carmen Pérez-Gandía
Rafael Sendra-Arranz
Gema García-Sáez
M. Elena Hernando
Álvaro Gutiérrez
机构
[1] Universidad Politécnica de Madrid,E.T.S. Ingenieros de Telecomunicación
[2] Centro de Investigación Biomédica en Red de Bioingeniería,undefined
[3] Biomateriales y Nanomedicina (CIBER-BBN),undefined
来源
关键词
Artificial neural network; Long short-term memory (LSTM); Type 1 diabetes; Times-series forecasting; Glucose prediction;
D O I
暂无
中图分类号
学科分类号
摘要
Diabetes is a chronic disease that affects a high percentage of the world population and produces different and serious complications to patients. Most diabetes complications may be avoided by controlling the blood glucose levels exhaustively. Moreover, a prediction of future glucose levels has shown to be fundamental in helping patients to plan and modify their treatment in real-time. In this paper, a glucose predictor based on long short-term memory neural networks is designed. Three input parameters are fed to the predictor: past glucose levels obtained from a continuous glucose monitoring sensor, the insulin units administered by an insulin pump and the patient’s carbohydrates intake. Different prediction times and input dimensions have been evaluated in order to provide the best prediction to patients. Results encourage the use of glucose predictions to avoid the occurrence of hypoglycemias, anticipate correction actions, and to increase the quality of life of these patients.
引用
收藏
页码:4191 / 4203
页数:12
相关论文
共 50 条
  • [1] Long short-term memory neural network for glucose prediction
    Carrillo-Moreno, Jaime
    Perez-Gandia, Carmen
    Sendra-Arranz, Rafael
    Garcia-Saez, Gema
    Hernando, M. Elena
    Gutierrez, Alvaro
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (09): : 4191 - 4203
  • [2] Long Short-term Memory Neural Network for Network Traffic Prediction
    Zhuo, Qinzheng
    Li, Qianmu
    Yan, Han
    Qi, Yong
    2017 12TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND KNOWLEDGE ENGINEERING (IEEE ISKE), 2017,
  • [3] Reactive Load Prediction Based on a Long Short-Term Memory Neural Network
    Zhang, Xu
    Wang, Yixian
    Zheng, Yuchuan
    Ding, Ruiting
    Chen, Yunlong
    Wang, Yi
    Cheng, Xueting
    Yue, Shuai
    IEEE ACCESS, 2020, 8 : 90969 - 90977
  • [4] Convolutional long short-term memory neural network for groundwater change prediction
    Patra, Sumriti Ranjan
    Chu, Hone-Jay
    FRONTIERS IN WATER, 2024, 6
  • [5] Stock Price Prediction With Long Short-Term Memory Recurrent Neural Network
    Jeenanunta, Chawalit
    Chaysiri, Rujira
    Thong, Laksmey
    2018 INTERNATIONAL CONFERENCE ON EMBEDDED SYSTEMS AND INTELLIGENT TECHNOLOGY & INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY FOR EMBEDDED SYSTEMS (ICESIT-ICICTES), 2018,
  • [6] A Convolutional Long Short-Term Memory Neural Network Based Prediction Model
    Tian, Y. H.
    Wu, Q.
    Zhang, Y.
    INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2020, 15 (05) : 1 - 12
  • [7] Short-Term Traffic Prediction Using Long Short-Term Memory Neural Networks
    Abbas, Zainab
    Al-Shishtawy, Ahmad
    Girdzijauskas, Sarunas
    Vlassov, Vladimir
    2018 IEEE INTERNATIONAL CONGRESS ON BIG DATA (IEEE BIGDATA CONGRESS), 2018, : 57 - 65
  • [8] Financial Crisis Prediction Based on Long-Term and Short-Term Memory Neural Network
    Ling, Tang
    Cai, Yinying
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [9] Sea Clutter Amplitude Prediction Using a Long Short-Term Memory Neural Network
    Ma, Liwen
    Wu, Jiaji
    Zhang, Jinpeng
    Wu, Zhensen
    Jeon, Gwanggil
    Tan, Mingzhou
    Zhang, Yushi
    REMOTE SENSING, 2019, 11 (23)
  • [10] Suspended sediment load prediction using long short-term memory neural network
    Nouar AlDahoul
    Yusuf Essam
    Pavitra Kumar
    Ali Najah Ahmed
    Mohsen Sherif
    Ahmed Sefelnasr
    Ahmed Elshafie
    Scientific Reports, 11