ON THE TRIEBEL-LIZORKIN SPACE BOUNDEDNESS OF MARCINKIEWICZ INTEGRALS ALONG COMPOUND SURFACES

被引:30
|
作者
Liu, Feng [1 ]
机构
[1] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao, Shandong 266590, Peoples R China
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2017年 / 20卷 / 02期
关键词
Marcinkiewicz integrals; rough kernels; compound surfaces; Triebel-Lizorkin spaces; Besov spaces; L-P-BOUNDEDNESS; BOUNDS;
D O I
10.7153/mia-20-35
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper the author present the boundedness of Marcinkiewicz integral operators associated to compound surfaces with rough kernels given by h epsilon triangle(gamma)(R+) and Omega epsilon L(log(+)L)(1/2)(Sn-1)boolean OR(boolean OR B-1<r<infinity(r)0,-1/2 (Sn-1)) on Triebel- Lizorkin spaces and Besov spaces. The main results of this paper represent improvements as well as natural extensions of many previously known results.
引用
收藏
页码:515 / 535
页数:21
相关论文
共 50 条
  • [21] BOUNDEDNESS OF SINGULAR INTEGRALS AND MAXIMAL SINGULAR INTEGRALS ON TRIEBEL-LIZORKIN SPACES
    Zhang, Chunjie
    Chen, Jiecheng
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2010, 21 (02) : 157 - 168
  • [22] On the boundedness of rough oscillatory singular integrals on Triebel-Lizorkin spaces
    Hussain Al-Qassem
    Leslie Cheng
    Yi Biao Pan
    Acta Mathematica Sinica, English Series, 2011, 27 : 1881 - 1898
  • [23] On the Boundedness of Rough Oscillatory Singular Integrals on Triebel-Lizorkin Spaces
    Al-Qassem, Hussain
    Cheng, Leslie
    Pan, Yi Biao
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2011, 27 (10) : 1881 - 1898
  • [24] Boundedness of Marcinkiewicz integrals with mixed homogeneity along compound surfaces
    Zhang, Daiqing
    Liu, Feng
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [25] Boundedness of Marcinkiewicz integrals with mixed homogeneity along compound surfaces
    Daiqing Zhang
    Feng Liu
    Journal of Inequalities and Applications, 2014
  • [26] Rough singular integrals on Triebel-Lizorkin space and Besov space
    Chen, Yanping
    Ding, Yong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 347 (02) : 493 - 501
  • [27] Boundedness of Fractional Integrals with a Rough Kernel on the Product Triebel-Lizorkin Spaces
    ZHANG HUI-HUI
    YU XIAO
    XIANG ZHONG-QI
    Ji You-qing
    Communications in Mathematical Research, 2017, 33 (03) : 259 - 273
  • [28] Boundedness of an oscillating multiplier on Triebel-Lizorkin spaces
    Cao, Wei
    Chen, Jie Cheng
    Fan, Da Shan
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2010, 26 (11) : 2071 - 2084
  • [29] Boundedness and continuity of maximal singular integrals and maximal functions on Triebel-Lizorkin spaces
    Feng Liu
    Qingying Xue
    Kôzô Yabuta
    Science China Mathematics, 2020, 63 : 907 - 936
  • [30] Boundedness and continuity of maximal singular integrals and maximal functions on Triebel-Lizorkin spaces
    Feng Liu
    Qingying Xue
    K?z? Yabuta
    ScienceChina(Mathematics), 2020, 63 (05) : 907 - 936