Grad-Shafranov Equation in Fractal Dimensions

被引:21
|
作者
El-Nabulsi, Rami Ahmad [1 ,2 ,3 ]
Anukool, Waranont [1 ,2 ]
机构
[1] Chiang Mai Univ, Fac Sci, Res Ctr Quantum Technol, Chiang Mai 50200, Thailand
[2] Chiang Mai Univ, Fac Sci, Dept Phys & Mat Sci, Chiang Mai 50200, Thailand
[3] Athens Inst Educ & Res, Math & Phys Div, 8 Valaoritou St, Athens 10671, Greece
关键词
Grad-Shafranov equation; fractal anisotropy; spheromak solution; MHD EQUILIBRIUM; WAVE-EQUATION; FRACTIONAL VISCOELASTICITY; ANISOTROPIC PRESSURE; PLASMA EQUILIBRIUM; MEDIA THEORY; TOKAMAK; RECONSTRUCTION; STABILITY;
D O I
10.1080/15361055.2022.2045531
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The main aim of this paper is to discuss the influence of fractal dimensions on the behavior of the solutions of the Grad-Shafranov equation. Our study is based on the product-like fractal measure approach constructed by Li and Ostoja-Starzewski in their attempt to explore anisotropic fractal continuum media. The fractal Grad-Shafranov equation gives the possibility to analyze, in a toroidal fusion reactor, the plasma equilibrium in fractal dimensions. Examples of the exact equilibrium solution are given for both the vacuum case outside the plasma and the toroidally shaped spheromak. Note: PACS numbers 05.45.Df: Fractals; 28.52.-s: Fusion reactors; 52.30.Cv: Magnetohydrodynamics; and 52.55.Ip: Spheromaks.
引用
收藏
页码:449 / 467
页数:19
相关论文
共 50 条
  • [41] Analytic, high-β solutions of the helical Grad-Shafranov equation
    Smith, DR
    Reiman, AH
    PHYSICS OF PLASMAS, 2004, 11 (08) : 3752 - 3757
  • [42] Criticality of the Grad-Shafranov equation: transport barriers and fragile equilibria
    Solano, ER
    PLASMA PHYSICS AND CONTROLLED FUSION, 2004, 46 (03) : L7 - L13
  • [43] Diffusive time evolution of the Grad-Shafranov equation for a toroidal plasma
    Montani, Giovanni
    Del Prete, Matteo
    Carlevaro, Nakia
    Cianfrani, Francesco
    JOURNAL OF PLASMA PHYSICS, 2021, 87 (03)
  • [44] Numerical solutions of Grad-Shafranov equation in a field-reversed configuration
    Zhao Xiao-Ming
    Sun Qi-Zhi
    Fang Dong-Fan
    Jia Yue-Song
    Liu Zheng-Fen
    Sun Cheng-Wei
    ACTA PHYSICA SINICA, 2016, 65 (18)
  • [45] Essentially different distributions of current in the inverse problem for the Grad-Shafranov equation
    A. S. Demidov
    V. V. Savel’ev
    Russian Journal of Mathematical Physics, 2010, 17 : 56 - 65
  • [46] Generalized Grad-Shafranov Equation for Gravitational Hall-MHD Equilibria
    Cremaschini, C.
    Beklemishev, A.
    Miller, J.
    Tessarotto, M.
    RAREFIED GAS DYNAMICS, 2009, 1084 : 1067 - +
  • [47] Generalized Grad-Shafranov equation for non-axisymmetric MHD equilibria
    Burby, J. W.
    Kallinikos, N.
    MacKay, R. S.
    PHYSICS OF PLASMAS, 2020, 27 (10)
  • [48] Boundary element modelling to solve the Grad-Shafranov equation as an axisymmetric problem
    Itagaki, Masafumi
    Fukunaga, Takaaki
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2006, 30 (09) : 746 - 757
  • [49] A new form of Grad-Shafranov equation for a tokomak with an elongated cross section
    Marjan, Alireza Seife Khajeh
    Sobhanian, Samad
    JOURNAL OF THEORETICAL AND APPLIED PHYSICS, 2012, 6 (01)
  • [50] On slowly evolving Grad-Shafranov equilibria
    Sonnerup, Bengt U. Oe.
    Hasegawa, Hiroshi
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2010, 115