Grad-Shafranov Equation in Fractal Dimensions

被引:21
|
作者
El-Nabulsi, Rami Ahmad [1 ,2 ,3 ]
Anukool, Waranont [1 ,2 ]
机构
[1] Chiang Mai Univ, Fac Sci, Res Ctr Quantum Technol, Chiang Mai 50200, Thailand
[2] Chiang Mai Univ, Fac Sci, Dept Phys & Mat Sci, Chiang Mai 50200, Thailand
[3] Athens Inst Educ & Res, Math & Phys Div, 8 Valaoritou St, Athens 10671, Greece
关键词
Grad-Shafranov equation; fractal anisotropy; spheromak solution; MHD EQUILIBRIUM; WAVE-EQUATION; FRACTIONAL VISCOELASTICITY; ANISOTROPIC PRESSURE; PLASMA EQUILIBRIUM; MEDIA THEORY; TOKAMAK; RECONSTRUCTION; STABILITY;
D O I
10.1080/15361055.2022.2045531
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The main aim of this paper is to discuss the influence of fractal dimensions on the behavior of the solutions of the Grad-Shafranov equation. Our study is based on the product-like fractal measure approach constructed by Li and Ostoja-Starzewski in their attempt to explore anisotropic fractal continuum media. The fractal Grad-Shafranov equation gives the possibility to analyze, in a toroidal fusion reactor, the plasma equilibrium in fractal dimensions. Examples of the exact equilibrium solution are given for both the vacuum case outside the plasma and the toroidally shaped spheromak. Note: PACS numbers 05.45.Df: Fractals; 28.52.-s: Fusion reactors; 52.30.Cv: Magnetohydrodynamics; and 52.55.Ip: Spheromaks.
引用
收藏
页码:449 / 467
页数:19
相关论文
共 50 条
  • [31] AN INTEGRAL TRANSFORM TECHNIQUE FOR SOLVING THE GRAD-SHAFRANOV EQUILIBRIUM EQUATION
    OLSON, RE
    MILEY, GH
    TRANSACTIONS OF THE AMERICAN NUCLEAR SOCIETY, 1981, 39 : 489 - 490
  • [32] Symmetries, weak symmetries, and related solutions of the Grad-Shafranov equation
    Cicogna, G.
    Pegoraro, F.
    Ceccherini, F.
    PHYSICS OF PLASMAS, 2010, 17 (10)
  • [33] Grad-Shafranov reconstruction:: an overview
    Sonnerup, Bengt U. Oe.
    Hasegawa, Hiroshi
    Teh, Wai-Leong
    Hau, Lin-Ni
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2006, 111 (A9)
  • [34] Iterative solution of the Grad-Shafranov equation in symmetric magnetic coordinates
    Brambilla, M
    PHYSICS OF PLASMAS, 2003, 10 (09) : 3674 - 3683
  • [35] A NEW CLASS OF EXACT, NONLINEAR SOLUTIONS TO THE GRAD-SHAFRANOV EQUATION
    ROUMELIOTIS, G
    ASTROPHYSICAL JOURNAL, 1993, 404 (02): : 781 - 787
  • [36] ON THE EXISTENCE OF A FREE-BOUNDARY SOLUTION OF THE GRAD-SHAFRANOV EQUATION
    FUJII, N
    HIRAI, M
    JOURNAL OF PLASMA PHYSICS, 1983, 30 (OCT) : 255 - 266
  • [37] A fast, high-order solver for the Grad-Shafranov equation
    Pataki, Andras
    Cerfon, Antoine J.
    Freidberg, Jeffrey P.
    Greengard, Leslie
    O'Neil, Michael
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 243 : 28 - 45
  • [38] An extension of Palumbo's method of solution for the Grad-Shafranov equation
    Hernandes, J. A.
    Clemente, R. A.
    PHYSICS OF PLASMAS, 2009, 16 (08)
  • [40] Isoparametric Bicubic Hermite Elements for Solution of the Grad-Shafranov Equation
    Huysmans, G. T. A.
    Goedbloed, J. P.
    Kerner, W.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1991, 2 (01): : 371 - 376