Grad-Shafranov Equation in Fractal Dimensions

被引:21
|
作者
El-Nabulsi, Rami Ahmad [1 ,2 ,3 ]
Anukool, Waranont [1 ,2 ]
机构
[1] Chiang Mai Univ, Fac Sci, Res Ctr Quantum Technol, Chiang Mai 50200, Thailand
[2] Chiang Mai Univ, Fac Sci, Dept Phys & Mat Sci, Chiang Mai 50200, Thailand
[3] Athens Inst Educ & Res, Math & Phys Div, 8 Valaoritou St, Athens 10671, Greece
关键词
Grad-Shafranov equation; fractal anisotropy; spheromak solution; MHD EQUILIBRIUM; WAVE-EQUATION; FRACTIONAL VISCOELASTICITY; ANISOTROPIC PRESSURE; PLASMA EQUILIBRIUM; MEDIA THEORY; TOKAMAK; RECONSTRUCTION; STABILITY;
D O I
10.1080/15361055.2022.2045531
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The main aim of this paper is to discuss the influence of fractal dimensions on the behavior of the solutions of the Grad-Shafranov equation. Our study is based on the product-like fractal measure approach constructed by Li and Ostoja-Starzewski in their attempt to explore anisotropic fractal continuum media. The fractal Grad-Shafranov equation gives the possibility to analyze, in a toroidal fusion reactor, the plasma equilibrium in fractal dimensions. Examples of the exact equilibrium solution are given for both the vacuum case outside the plasma and the toroidally shaped spheromak. Note: PACS numbers 05.45.Df: Fractals; 28.52.-s: Fusion reactors; 52.30.Cv: Magnetohydrodynamics; and 52.55.Ip: Spheromaks.
引用
收藏
页码:449 / 467
页数:19
相关论文
共 50 条
  • [1] ON THE CYLINDRICAL GRAD-SHAFRANOV EQUATION
    Beskin, V. S.
    Nokhrina, E. E.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2008, 17 (10): : 1731 - 1742
  • [2] Grad-Shafranov equation with anisotropic pressure
    Beskin, VS
    Kuznetsova, IV
    ASTROPHYSICAL JOURNAL, 2000, 541 (01): : 257 - 260
  • [3] Symmetry analysis of the Grad-Shafranov equation
    White, R. L.
    Hazeltine, R. D.
    PHYSICS OF PLASMAS, 2009, 16 (12)
  • [4] A similarity reduction of the Grad-Shafranov equation
    Litvinenko, Yuri E.
    PHYSICS OF PLASMAS, 2010, 17 (07)
  • [5] Solitonlike solutions of the Grad-Shafranov equation
    Lapenta, G
    PHYSICAL REVIEW LETTERS, 2003, 90 (13)
  • [6] On multiple solutions of the Grad-Shafranov equation
    Ham, C. J.
    Farrell, P. E.
    NUCLEAR FUSION, 2024, 64 (03)
  • [7] Analytical solutions to the Grad-Shafranov equation
    Atanasiu, CV
    Günter, S
    Lackner, K
    Miron, IG
    PHYSICS OF PLASMAS, 2004, 11 (07) : 3510 - 3518
  • [8] VARIATIONAL MOMENT SOLUTIONS TO THE GRAD-SHAFRANOV EQUATION
    LAO, LL
    HIRSHMAN, SP
    WIELAND, RM
    PHYSICS OF FLUIDS, 1981, 24 (08) : 1431 - 1441
  • [9] Relativistic Grad-Shafranov equation with anisotropic pressure
    Kuznetsova, IV
    ASTROPHYSICAL JOURNAL, 2005, 618 (01): : 432 - 437
  • [10] An asymptotic Grad-Shafranov equation for quasisymmetric stellarators
    Nikulsin, Nikita
    Sengupta, Wrick
    Jorge, Rogerio
    Bhattacharjee, Amitava
    JOURNAL OF PLASMA PHYSICS, 2024, 90 (06)