The odd girth of the generalised Kneser graph

被引:9
|
作者
Denley, T [1 ]
机构
[1] UNIV CAMBRIDGE,DEPT PURE MATH & MATH STAT,CAMBRIDGE CB2 1SB,ENGLAND
关键词
D O I
10.1006/eujc.1996.0122
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X = {1, 2,..., n} be a set of n elements and let X-(r) be the collection of all the subsets of X containing precisely r elements. Then the generalised Kneser graph K(n, r, s) (when 2r - s less than or equal to n) is the graph with vertex set X-(r) and edges AB for A, B is an element of X-(r) with \A boolean AND B\ less than or equal to s. Here we show that the odd girth of the generalised Kneser graph K(n, r, s) is 2 inverted right perpendicular r-s/n-2(r-s) inverted left perpendicular +1 provided that n is large enough compared with r and s. (C) 1997 Academic Press Limited.
引用
收藏
页码:607 / 611
页数:5
相关论文
共 50 条
  • [31] SMALLEST REGULAR GRAPHS WITH PRESCRIBED ODD GIRTH
    ZHANG, GH
    JOURNAL OF GRAPH THEORY, 1991, 15 (05) : 453 - 467
  • [32] A short proof of the odd-girth theorem
    van Dam, E. R.
    Fiol, M. A.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (03):
  • [33] BOUNDING THE VALENCY OF POLYGONAL GRAPHS WITH ODD GIRTH
    PERKEL, M
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1979, 31 (06): : 1307 - 1321
  • [34] Decomposition of the Kneser Graph into paths of length four
    Whitt, T. R., III
    Rodger, C. A.
    DISCRETE MATHEMATICS, 2015, 338 (08) : 1284 - 1288
  • [35] A note on Pk-decomposition of the Kneser graph
    Sahai, C. Cecily
    Kumar, S. Sampath
    Jose, T. Arputha
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024,
  • [36] On the chromatic number of a random subgraph of the Kneser graph
    Kiselev, S. G.
    Raigorodskii, A. M.
    DOKLADY MATHEMATICS, 2017, 96 (02) : 475 - +
  • [37] Topological indices of the Kneser graph KGn,k
    Mohammadyari, R.
    Darafsheh, M. R.
    FILOMAT, 2012, 26 (04) : 665 - 672
  • [38] ON THE CHROMATIC NUMBER OF THE GENERAL KNESER-GRAPH
    FRANKL, P
    JOURNAL OF GRAPH THEORY, 1985, 9 (02) : 217 - 220
  • [39] On the chromatic number of a random subgraph of the Kneser graph
    S. G. Kiselev
    A. M. Raigorodskii
    Doklady Mathematics, 2017, 96 : 475 - 476
  • [40] The homotopy type of complexes of homomorphisms from a complete graph to a Kneser graph
    József Osztényi
    Acta Scientiarum Mathematicarum, 2010, 76 (3-4): : 713 - 722