The odd girth of the generalised Kneser graph

被引:9
|
作者
Denley, T [1 ]
机构
[1] UNIV CAMBRIDGE,DEPT PURE MATH & MATH STAT,CAMBRIDGE CB2 1SB,ENGLAND
关键词
D O I
10.1006/eujc.1996.0122
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X = {1, 2,..., n} be a set of n elements and let X-(r) be the collection of all the subsets of X containing precisely r elements. Then the generalised Kneser graph K(n, r, s) (when 2r - s less than or equal to n) is the graph with vertex set X-(r) and edges AB for A, B is an element of X-(r) with \A boolean AND B\ less than or equal to s. Here we show that the odd girth of the generalised Kneser graph K(n, r, s) is 2 inverted right perpendicular r-s/n-2(r-s) inverted left perpendicular +1 provided that n is large enough compared with r and s. (C) 1997 Academic Press Limited.
引用
收藏
页码:607 / 611
页数:5
相关论文
共 50 条
  • [21] Short even cycles in cages with odd girth
    Jiang, T
    ARS COMBINATORIA, 2001, 59 : 165 - 169
  • [22] BOUNDS ON GRAPH SPECTRA AND GIRTH
    BRIGHAM, RC
    DUTTON, RD
    ARS COMBINATORIA, 1985, 20 : 91 - 100
  • [23] ON THE GIRTH OF THE UNIT GRAPH OF A RING
    Su, Huadong
    Zhou, Yiqiang
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2014, 13 (02)
  • [24] On eigenvalue multiplicity and the girth of a graph
    Rowlinson, P.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (10) : 2375 - 2381
  • [25] On the girth of voltage graph lifts
    Exoo, Geoffrey
    Jajcay, Robert
    EUROPEAN JOURNAL OF COMBINATORICS, 2011, 32 (04) : 554 - 562
  • [26] Note on the Girth of a Borderenergetic Graph
    Deng, Bo
    Huo, Bofeng
    Li, Xueliang
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2020, 83 (03) : 571 - 577
  • [27] Diameter and girth of Torsion Graph
    Rad, P. Malakooti
    Yassemi, S.
    Ghalandarzadeh, Sh.
    Safari, P.
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2014, 22 (03): : 127 - 136
  • [28] Computing the girth of a planar graph
    Djidjev, HN
    AUTOMATA LANGUAGES AND PROGRAMMING, 2000, 1853 : 821 - 831
  • [29] A high girth graph construction
    Chandran, LS
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2003, 16 (03) : 366 - 370
  • [30] EXTREMAL REGULAR GRAPHS WITH PRESCRIBED ODD GIRTH
    ZHANG, GH
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1994, 60 (02) : 222 - 238