A Predictive Phosphorylation Signature of Lung Cancer

被引:12
|
作者
Wu, Chang-Jiun [1 ]
Cai, Tianxi [2 ]
Rikova, Klarisa [3 ]
Merberg, David [4 ]
Kasif, Simon [1 ,5 ,6 ]
Steffen, Martin [1 ,7 ]
机构
[1] Boston Univ, Dept Biomed Engn, Boston, MA 02215 USA
[2] Harvard Univ, Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
[3] Cell Signaling Technol, Danvers, MA USA
[4] Vertex Pharmaceut, Cambridge, MA USA
[5] Harvard Mit Div Hlth Sci & Technol, Childrens Hosp Informat Program, Boston, MA USA
[6] Boston Univ, Ctr Adv Genom Technol, Boston, MA 02215 USA
[7] Boston Univ, Sch Med, Dept Pathol & Lab Med, Boston, MA 02215 USA
来源
PLOS ONE | 2009年 / 4卷 / 11期
关键词
PROTEIN-PHOSPHORYLATION; TYROSINE PHOSPHORYLATION; MASS-SPECTROMETRY; KINASES; CLASSIFICATION; INHIBITION; VALIDATION; CARCINOMAS; REGRESSION; PROTEOMICS;
D O I
10.1371/journal.pone.0007994
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Aberrant activation of signaling pathways drives many of the fundamental biological processes that accompany tumor initiation and progression. Inappropriate phosphorylation of intermediates in these signaling pathways are a frequently observed molecular lesion that accompanies the undesirable activation or repression of pro- and antioncogenic pathways. Therefore, methods which directly query signaling pathway activation via phosphorylation assays in individual cancer biopsies are expected to provide important insights into the molecular "logic'' that distinguishes cancer and normal tissue on one hand, and enables personalized intervention strategies on the other. Results: We first document the largest available set of tyrosine phosphorylation sites that are, individually, differentially phosphorylated in lung cancer, thus providing an immediate set of drug targets. Next, we develop a novel computational methodology to identify pathways whose phosphorylation activity is strongly correlated with the lung cancer phenotype. Finally, we demonstrate the feasibility of classifying lung cancers based on multi-variate phosphorylation signatures. Conclusions: Highly predictive and biologically transparent phosphorylation signatures of lung cancer provide evidence for the existence of a robust set of phosphorylation mechanisms (captured by the signatures) present in the majority of lung cancers, and that reliably distinguish each lung cancer from normal. This approach should improve our understanding of cancer and help guide its treatment, since the phosphorylation signatures highlight proteins and pathways whose phosphorylation should be inhibited in order to prevent unregulated proliferation.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Diagnostic and Predictive Biomarkers in Lung Cancer
    Fumagalli, Caterina
    Barberis, Massimo
    CANCERS, 2021, 13 (11)
  • [32] A predictive signature for response to immunotherapy in non-small cell lung cancer based on plasma proteomics and clinical parameters
    Shaked, Y.
    Lahav, C.
    Harel, M.
    Jacob, E.
    Sela, I.
    Yahalom, G.
    Elon, Y.
    Sharon, O.
    Kamer, I.
    Dicker, A.
    Bar, J.
    Katzenelson, R.
    Wolf, I.
    Gottfried, M.
    Abu-Amana, M.
    Agbarya, A.
    Nechushtan, H.
    Moskovits, M. T.
    Zer, A.
    ANNALS OF ONCOLOGY, 2021, 32 : S388 - S388
  • [33] Construction of a genomic instability-derived predictive prognostic signature for non-small cell lung cancer patients
    Li, Wei
    Wu, Huaman
    Xu, Juan
    CANCER GENETICS, 2023, 278 : 24 - 37
  • [34] Identification of a predictive circulating immunological signature of response to immune checkpoint inhibitors in non-small cell lung cancer
    Khatir, Wassila
    Humbert, Olivier
    Neels, Jaap
    Berland, Lea
    Benzaquen, Jonathan
    Rivera, Fabian Andres Gallardo
    Allegra, Maryline
    Salah, Myriam
    Tanga, Virginie
    Bordone, Olivier
    Fayada, Julien
    Lespinet-Fabre, Virginie
    Long-Mira, Elodie
    Lassalle, Sandra
    Brest, Patrick
    Vouret, Valerie
    Maniel, Charlotte
    Boutros, Jacques
    Heeke, Simon
    Hofman, Veronique
    Marquette, Charles-Hugo
    Hofman, Paul
    Ilie, Marius
    CANCER RESEARCH, 2022, 82 (12)
  • [35] Pathway-based identification of a smoking associated 6-gene signature predictive of lung cancer risk and survival
    Guo, Nancy Lan
    Wan, Ying-Wooi
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2012, 55 (02) : 97 - 105
  • [36] A germline predictive signature of response to platinum chemotherapy in esophageal cancer
    Rumiato, Enrica
    Boldrin, Elisa
    Malacrida, Sandro
    Battaglia, Giorgio
    Bocus, Paolo
    Castoro, Carlo
    Cagol, Matted
    Chiarion-Sileni, Vanna
    Ruol, Alberto
    Amadori, Alberto
    Saggioro, Daniela
    TRANSLATIONAL RESEARCH, 2016, 171 : 29 - 37
  • [37] GUT MICROBIOME SIGNATURE AS A PREDICTIVE AND MODIFIABLE BIOMARKER FOR PROSTATE CANCER
    Liss, Michael A.
    White, James
    Lai, Zhao
    Johnson-Pais, Teresa
    Leach, Robin
    Goros, Martin
    Gelfond, Jonathan
    Wickes, Brian
    JOURNAL OF UROLOGY, 2024, 211 (05): : E893 - E894
  • [38] GeneExpressScore Signature: a robust prognostic and predictive classifier in gastric cancer
    Zhu, Xiaoqiang
    Tian, Xianglong
    Sun, Tiantian
    Yu, Chenyang
    Cao, Yingying
    Yan, Tingting
    Shen, Chaoqin
    Lin, Yanwei
    Fang, Jing-Yuan
    Hong, Jie
    Chen, Haoyan
    MOLECULAR ONCOLOGY, 2018, 12 (11) : 1871 - 1883
  • [39] Prognostic and Predictive Value of a Breast Cancer Expression Signature in Localized Prostate Cancer
    Abida, Wassim
    Scher, Howard I.
    JAMA ONCOLOGY, 2017, 3 (12) : 1673 - 1674
  • [40] Prognostic and predictive value of immunoscore signature in gastric cancer.
    Qi, Xiaolong
    Jiang, Yuming
    Zhang, Qi
    Hu, Yanfeng
    Li, Tuanjie
    Yu, Jiang
    Zhao, Liying
    Ye, Gengtai
    Deng, Haijun
    Mou, Tingyu
    Liu, Hao
    Cai, Shirong
    Zhou, Zhiwei
    Chen, Guihua
    Li, Guoxin
    JOURNAL OF CLINICAL ONCOLOGY, 2017, 35