A Predictive Phosphorylation Signature of Lung Cancer

被引:12
|
作者
Wu, Chang-Jiun [1 ]
Cai, Tianxi [2 ]
Rikova, Klarisa [3 ]
Merberg, David [4 ]
Kasif, Simon [1 ,5 ,6 ]
Steffen, Martin [1 ,7 ]
机构
[1] Boston Univ, Dept Biomed Engn, Boston, MA 02215 USA
[2] Harvard Univ, Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
[3] Cell Signaling Technol, Danvers, MA USA
[4] Vertex Pharmaceut, Cambridge, MA USA
[5] Harvard Mit Div Hlth Sci & Technol, Childrens Hosp Informat Program, Boston, MA USA
[6] Boston Univ, Ctr Adv Genom Technol, Boston, MA 02215 USA
[7] Boston Univ, Sch Med, Dept Pathol & Lab Med, Boston, MA 02215 USA
来源
PLOS ONE | 2009年 / 4卷 / 11期
关键词
PROTEIN-PHOSPHORYLATION; TYROSINE PHOSPHORYLATION; MASS-SPECTROMETRY; KINASES; CLASSIFICATION; INHIBITION; VALIDATION; CARCINOMAS; REGRESSION; PROTEOMICS;
D O I
10.1371/journal.pone.0007994
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Aberrant activation of signaling pathways drives many of the fundamental biological processes that accompany tumor initiation and progression. Inappropriate phosphorylation of intermediates in these signaling pathways are a frequently observed molecular lesion that accompanies the undesirable activation or repression of pro- and antioncogenic pathways. Therefore, methods which directly query signaling pathway activation via phosphorylation assays in individual cancer biopsies are expected to provide important insights into the molecular "logic'' that distinguishes cancer and normal tissue on one hand, and enables personalized intervention strategies on the other. Results: We first document the largest available set of tyrosine phosphorylation sites that are, individually, differentially phosphorylated in lung cancer, thus providing an immediate set of drug targets. Next, we develop a novel computational methodology to identify pathways whose phosphorylation activity is strongly correlated with the lung cancer phenotype. Finally, we demonstrate the feasibility of classifying lung cancers based on multi-variate phosphorylation signatures. Conclusions: Highly predictive and biologically transparent phosphorylation signatures of lung cancer provide evidence for the existence of a robust set of phosphorylation mechanisms (captured by the signatures) present in the majority of lung cancers, and that reliably distinguish each lung cancer from normal. This approach should improve our understanding of cancer and help guide its treatment, since the phosphorylation signatures highlight proteins and pathways whose phosphorylation should be inhibited in order to prevent unregulated proliferation.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] A microRNA gene signature for identification of lung cancer
    Xue, Zhiqiang
    Wen, Jiaxin
    Chu, Xiangyang
    Xue, Xinying
    SURGICAL ONCOLOGY-OXFORD, 2014, 23 (03): : 126 - 131
  • [22] Characterization of a B Lymphocyte Signature Predictive of Chronic Lung Allograft Dysfunction
    Brosseau, C.
    Durand, M.
    Durand, E.
    Loy, J.
    Foureau, A.
    Lacoste, P.
    Royer, P. -J.
    Magnan, A.
    Brouard, S.
    AMERICAN JOURNAL OF TRANSPLANTATION, 2017, 17 : 210 - 211
  • [23] Development and validation of an oxidative phosphorylation-related gene signature in lung adenocarcinoma
    Xu, Zihao
    Wu, Zilong
    Zhang, Jingtao
    Zhou, Ruihao
    Ye, Ling
    Yang, Pingliang
    Yu, Bentong
    EPIGENOMICS, 2020, 12 (15) : 1333 - 1348
  • [24] Transcriptional profiling of lung macrophages identifies a predictive signature for inflammatory lung disease in preterm infants
    Debashis Sahoo
    Livia S. Zaramela
    Gilberto E. Hernandez
    Uyen Mai
    Sahar Taheri
    Dharanidhar Dang
    Ashley N. Stouch
    Rachel M. Medal
    Alyssa M. McCoy
    Judy L. Aschner
    Timothy S. Blackwell
    Karsten Zengler
    Lawrence S. Prince
    Communications Biology, 3
  • [25] Transcriptional profiling of lung macrophages identifies a predictive signature for inflammatory lung disease in preterm infants
    Sahoo, Debashis
    Zaramela, Livia S.
    Hernandez, Gilberto E.
    Mai, Uyen
    Taheri, Sahar
    Dang, Dharanidhar
    Stouch, Ashley N.
    Medal, Rachel M.
    McCoy, Alyssa M.
    Aschner, Judy L.
    Blackwell, Timothy S.
    Zengler, Karsten
    Prince, Lawrence S.
    COMMUNICATIONS BIOLOGY, 2020, 3 (01)
  • [26] Predictive Analysis of Lung Cancer Recurrence
    Srivastava, Shweta
    Rathi, Manisha
    Gupta, J. P.
    ADVANCES IN COMPUTING AND COMMUNICATIONS, PT I, 2011, 190 : 260 - 269
  • [27] Pronostic and predictive factors in lung cancer
    Marijon, H.
    Bouyon, A.
    Vignot, S.
    Besse, B.
    BULLETIN DU CANCER, 2009, 96 (04) : 391 - 404
  • [28] PREDICTIVE CELLULAR PATHOLOGY OF LUNG CANCER
    Petersen, I.
    CELLULAR ONCOLOGY, 2010, 32 (03) : 161 - 161
  • [29] Prognostic and predictive factors for lung cancer
    Paesmans, Marianne
    BREATHE, 2012, 9 (02) : 113 - 122
  • [30] Diagnostic and Predictive Immunocytochemistry in Lung Cancer
    Jain, Deepali
    Satapathy, Shraddhanjali
    Bubendorf, Lukas
    ACTA CYTOLOGICA, 2024,