A Predictive Phosphorylation Signature of Lung Cancer

被引:12
|
作者
Wu, Chang-Jiun [1 ]
Cai, Tianxi [2 ]
Rikova, Klarisa [3 ]
Merberg, David [4 ]
Kasif, Simon [1 ,5 ,6 ]
Steffen, Martin [1 ,7 ]
机构
[1] Boston Univ, Dept Biomed Engn, Boston, MA 02215 USA
[2] Harvard Univ, Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
[3] Cell Signaling Technol, Danvers, MA USA
[4] Vertex Pharmaceut, Cambridge, MA USA
[5] Harvard Mit Div Hlth Sci & Technol, Childrens Hosp Informat Program, Boston, MA USA
[6] Boston Univ, Ctr Adv Genom Technol, Boston, MA 02215 USA
[7] Boston Univ, Sch Med, Dept Pathol & Lab Med, Boston, MA 02215 USA
来源
PLOS ONE | 2009年 / 4卷 / 11期
关键词
PROTEIN-PHOSPHORYLATION; TYROSINE PHOSPHORYLATION; MASS-SPECTROMETRY; KINASES; CLASSIFICATION; INHIBITION; VALIDATION; CARCINOMAS; REGRESSION; PROTEOMICS;
D O I
10.1371/journal.pone.0007994
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Aberrant activation of signaling pathways drives many of the fundamental biological processes that accompany tumor initiation and progression. Inappropriate phosphorylation of intermediates in these signaling pathways are a frequently observed molecular lesion that accompanies the undesirable activation or repression of pro- and antioncogenic pathways. Therefore, methods which directly query signaling pathway activation via phosphorylation assays in individual cancer biopsies are expected to provide important insights into the molecular "logic'' that distinguishes cancer and normal tissue on one hand, and enables personalized intervention strategies on the other. Results: We first document the largest available set of tyrosine phosphorylation sites that are, individually, differentially phosphorylated in lung cancer, thus providing an immediate set of drug targets. Next, we develop a novel computational methodology to identify pathways whose phosphorylation activity is strongly correlated with the lung cancer phenotype. Finally, we demonstrate the feasibility of classifying lung cancers based on multi-variate phosphorylation signatures. Conclusions: Highly predictive and biologically transparent phosphorylation signatures of lung cancer provide evidence for the existence of a robust set of phosphorylation mechanisms (captured by the signatures) present in the majority of lung cancers, and that reliably distinguish each lung cancer from normal. This approach should improve our understanding of cancer and help guide its treatment, since the phosphorylation signatures highlight proteins and pathways whose phosphorylation should be inhibited in order to prevent unregulated proliferation.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Validation of the 12-Gene Predictive Signature for Adjuvant Chemotherapy Response in Lung Cancer
    Xie, Y.
    Lu, W.
    Wang, S.
    Tang, X.
    Tang, H.
    Zhou, Y.
    Moran, C.
    Behrens, C.
    Roth, J.
    Johnson, D.
    Swisher, S.
    Heymach, J.
    Papadimitrakopoulou, V.
    Xiao, G.
    Minna, J.
    Wistuba, I.
    JOURNAL OF THORACIC ONCOLOGY, 2017, 12 (08) : S1544 - S1544
  • [2] Validation of the 12-gene Predictive Signature for Adjuvant Chemotherapy Response in Lung Cancer
    Xie, Yang
    Lu, Wei
    Wang, Shidan
    Tang, Ximing
    Tang, Hao
    Zhou, Yunyun
    Moran, Cesar
    Behrens, Carmen
    Roth, Jack A.
    Zhou, Qinghua
    Johnson, David H.
    Swisher, Stephen G.
    Heymach, John V.
    Papadimitrakopoulou, Vassiliki A.
    Xiao, Guanghua
    Minna, John D.
    Wistuba, Ignacio I.
    CLINICAL CANCER RESEARCH, 2019, 25 (01) : 150 - 157
  • [3] Molecular signature of lung cancer
    Yang, Pan-chyr
    JOURNAL OF THORACIC ONCOLOGY, 2007, 2 (08) : S218 - S219
  • [4] A molecular signature predictive of indolent prostate cancer
    Irshad, Shazia
    Bansal, Mukesh
    Magnen, Clementine L.
    Dillon, Risham
    Castillo-Martin, Mireia
    Zheng, Tian
    Aytes, Alvaro
    Wenske, Sven
    Guarnieri, Paolo
    Sumazin, Pavel
    Benson, Mitchell
    Shen, Michael M.
    Califano, Andrea
    Abate-Shen, Cory
    CANCER RESEARCH, 2014, 74 (19)
  • [5] A Molecular Signature Predictive of Indolent Prostate Cancer
    Irshad, Shazia
    Bansal, Mukesh
    Castillo-Martin, Mireia
    Zheng, Tian
    Aytes, Alvaro
    Wenske, Sven
    Le Magnen, Clementine
    Guarnieri, Paolo
    Sumazin, Pavel
    Benson, Mitchell C.
    Shen, Michael M.
    Califano, Andrea
    Abate-Shen, Cory
    SCIENCE TRANSLATIONAL MEDICINE, 2013, 5 (202)
  • [6] Protein Signature of Lung Cancer Tissues
    Mehan, Michael R.
    Ayers, Deborah
    Thirstrup, Derek
    Xiong, Wei
    Ostroff, Rachel M.
    Brody, Edward N.
    Walker, Jeffrey J.
    Gold, Larry
    Jarvis, Thale C.
    Janjic, Nebojsa
    Baird, Geoffrey S.
    Wilcox, Sheri K.
    PLOS ONE, 2012, 7 (04):
  • [7] Prognostic and Predictive Gene Signature for Adjuvant Chemotherapy in Resected Non-Small-Cell Lung Cancer
    Zhu, Chang-Qi
    Ding, Keyue
    Strumpf, Dan
    Weir, Barbara A.
    Meyerson, Matthew
    Pennell, Nathan
    Thomas, Roman K.
    Naoki, Katsuhiko
    Ladd-Acosta, Christine
    Liu, Ni
    Pintilie, Melania
    Der, Sandy
    Seymour, Lesley
    Jurisica, Igor
    Shepherd, Frances A.
    Tsao, Ming-Sound
    JOURNAL OF CLINICAL ONCOLOGY, 2010, 28 (29) : 4417 - 4424
  • [8] A UNIQUE GENE SIGNATURE PREDICTIVE OF SURVIVAL IN PATIENTS WITH LUNG ADENOCARCINOMA
    Ganti, NagaRamaniBhavaniHarika
    Vanga, Prasanthi
    Grewal, Udhayvir
    Patil, Ashish
    CHEST, 2021, 160 (04) : 1620A - 1620A
  • [9] ERK Phosphorylation Is Predictive of Resistance to IGF-1R Inhibition in Small Cell Lung Cancer
    Zinn, Rebekah L.
    Gardner, Eric E.
    Marchionni, Luigi
    Murphy, Sara C.
    Dobromilskaya, Irina
    Hann, Christine L.
    Rudin, Charles M.
    MOLECULAR CANCER THERAPEUTICS, 2013, 12 (06) : 1131 - 1139
  • [10] Prognostic and predictive value of a pathomics signature in gastric cancer
    Dexin Chen
    Meiting Fu
    Liangjie Chi
    Liyan Lin
    Jiaxin Cheng
    Weisong Xue
    Chenyan Long
    Wei Jiang
    Xiaoyu Dong
    Jian Sui
    Dajia Lin
    Jianping Lu
    Shuangmu Zhuo
    Side Liu
    Guoxin Li
    Gang Chen
    Jun Yan
    Nature Communications, 13