A quadratic finite element wavelet Riesz basis

被引:7
|
作者
Rekatsinas, Nikolaos [1 ]
Stevenson, Rob [1 ]
机构
[1] Univ Amsterdam, Korteweg de Vries Inst Math, POB 94248, NL-1090 GE Amsterdam, Netherlands
关键词
Wavelets; finite elements; Riesz bases; biorthogonality; vanishing moments; GENERAL MESHES; CONSTRUCTION; BASES; TRIANGULATIONS; PREWAVELETS; STABILITY;
D O I
10.1142/S0219691318500339
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, continuous piecewise quadratic finite element wavelets are constructed on general polygons in R-2. The wavelets are stable in H-s for vertical bar s vertical bar < 3/2 and have two vanishing moments. Each wavelet is a linear combination of 11 or 13 nodal basis functions. Numerically computed condition numbers for s is an element of {-1,0,1} are provided for the unit square.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] GENERALIZED FINITE ELEMENT METHODS FOR QUADRATIC EIGENVALUE PROBLEMS
    Malqvist, Axel
    Peterseim, Daniel
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2017, 51 (01): : 147 - 163
  • [32] A nonlinear study of elastomers by a quadratic finite-element
    Mehdaoui, A.
    Abouchita, J.
    MATERIAUX & TECHNIQUES, 2011, 99 (03): : 349 - 359
  • [33] Quadratic immersed finite element spaces and their approximation capabilities
    Camp, B
    Lin, T
    Lin, YP
    Sun, WW
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2006, 24 (1-4) : 81 - 112
  • [34] Quadratic finite element methods for unilateral contact problems
    Hild, P
    Laborde, P
    APPLIED NUMERICAL MATHEMATICS, 2002, 41 (03) : 401 - 421
  • [35] Quadratic immersed finite element spaces and their approximation capabilities
    Brian Camp
    Tao Lin
    Yanping Lin
    Weiwei Sun
    Advances in Computational Mathematics, 2006, 24 : 81 - 112
  • [36] FINITE-ELEMENT BASIS IN DATA ADJUSTMENT
    SCHMITTROTH, F
    SCHENTER, RE
    NUCLEAR SCIENCE AND ENGINEERING, 1980, 74 (03) : 168 - 177
  • [37] BASIS OF FINITE-ELEMENT METHOD - PREFACE
    WASHIZU, K
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1976, 302 (5-6): : R7 - R8
  • [38] BASIS OF FINITE-ELEMENT METHOD - FOREWORD
    POMERANTZ, MA
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1976, 302 (5-6): : R5 - R5
  • [39] Exemplifying Quantum Systems in a Finite Element Basis
    Young, Toby D.
    COMPUTATIONAL METHODS IN SCIENCE AND ENGINEERING, VOL 2: ADVANCES IN COMPUTATIONAL SCIENCE, 2009, 1148 : 285 - 288
  • [40] On basis constructions in finite element exterior calculus
    Licht, Martin W.
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2022, 48 (02)