On basis constructions in finite element exterior calculus

被引:5
|
作者
Licht, Martin W. [1 ]
机构
[1] Ecole Polytech Fed Lausanne EPFL, CH-1015 Lausanne, Switzerland
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
Barycentric differential form; Canonical spanning sets; Degrees of freedom; Finite element exterior calculus; Geometrically decomposed bases; COMPUTATIONAL BASES; ORDER; SPACES; BDMK; RTK;
D O I
10.1007/s10444-022-09926-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a systematic self-contained exposition of how to construct geometrically decomposed bases and degrees of freedom in finite element exterior calculus. In particular, we elaborate upon a previously overlooked basis for one of the families of finite element spaces, which is of interest for implementations. Moreover, we give details for the construction of isomorphisms and duality pairings between finite element spaces. These structural results show, for example, how to transfer linear dependencies between canonical spanning sets, or how to derive the degrees of freedom.
引用
收藏
页数:36
相关论文
共 50 条
  • [1] On basis constructions in finite element exterior calculus
    Martin W. Licht
    [J]. Advances in Computational Mathematics, 2022, 48
  • [2] Finite Element Exterior Calculus.
    Hiptmair, Ralf
    [J]. SIAM REVIEW, 2020, 62 (04) : 990 - 992
  • [3] Finite Element Exterior Calculus with Script Geometry
    Cerejeiras, Paula
    Kahler, Uwe
    Legatiuk, Dmitrii
    [J]. INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM-2018), 2019, 2116
  • [4] FINITE ELEMENT EXTERIOR CALCULUS FOR PARABOLIC PROBLEMS
    Arnold, Douglas N.
    Chen, Hongtao
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2017, 51 (01): : 17 - 34
  • [5] HYBRIDIZATION AND POSTPROCESSING IN FINITE ELEMENT EXTERIOR CALCULUS
    Awanou, Gerard
    Fabien, Maurice
    Guzman, Johnny
    Stern, Ari
    [J]. MATHEMATICS OF COMPUTATION, 2022, 92 (339) : 79 - 115
  • [6] FINITE ELEMENT EXTERIOR CALCULUS FOR EVOLUTION PROBLEMS
    Gillette, Andrew
    Holst, Michael
    Zhu, Yunrong
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 2017, 35 (02) : 187 - 212
  • [7] Smoothed projections in finite element exterior calculus
    Christiansen, Snorre H.
    Winther, Ragnar
    [J]. MATHEMATICS OF COMPUTATION, 2008, 77 (262) : 813 - 829
  • [8] Symmetric Bases for Finite Element Exterior Calculus Spaces
    Berchenko-Kogan, Yakov
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2023,
  • [9] Symmetry and Invariant Bases in Finite Element Exterior Calculus
    Licht, Martin W.
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2024, 24 (04) : 1185 - 1224
  • [10] AN EXTENDED GALERKIN ANALYSIS IN FINITE ELEMENT EXTERIOR CALCULUS
    Hong, Qingguo
    Li, Yuwen
    Xu, Jinchao
    [J]. MATHEMATICS OF COMPUTATION, 2022, 91 (335) : 1077 - 1106