HYBRIDIZATION AND POSTPROCESSING IN FINITE ELEMENT EXTERIOR CALCULUS

被引:0
|
作者
Awanou, Gerard [1 ]
Fabien, Maurice [2 ]
Guzman, Johnny [2 ]
Stern, Ari [3 ]
机构
[1] Univ Illinois, Dept Math Stat & Comp Sci, 1200 W Harrison St, Chicago, IL 60607 USA
[2] Brown Univ, Div Appl Math, 182 George St, Providence, RI 02912 USA
[3] Washington Univ St Louis, Dept Math & Stat, One Brookings Dr, St Louis, MO 63130 USA
基金
英国工程与自然科学研究理事会;
关键词
DIFFERENTIAL FORMS; DISCONTINUOUS GALERKIN; MIXED METHODS; PART II; BOUNDARY; TRACES; EQUATIONS; SPACES;
D O I
10.1090/mcom/3743
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We hybridize the methods of finite element exterior calculus for the Hodge-Laplace problem on differential k-forms in Rn. In the cases k = 0 and k = n, we recover well-known primal and mixed hybrid methods for the scalar Poisson equation, while for 0 < k < n, we obtain new hybrid finite element methods, including methods for the vector Poisson equation in n = 2 and n = 3 dimensions. We also generalize Stenberg postprocessing [RAIRO Mode ' l. Math. Anal. Nume ' r. 25 (1991), pp. 151-167] from k = n to arbitrary k, proving new superconvergence estimates. Finally, we discuss how this hybridization framework may be extended to include nonconforming and hybridizable discontinuous Galerkin methods.
引用
收藏
页码:79 / 115
页数:37
相关论文
共 50 条
  • [1] Finite Element Exterior Calculus.
    Hiptmair, Ralf
    [J]. SIAM REVIEW, 2020, 62 (04) : 990 - 992
  • [2] Finite Element Exterior Calculus with Script Geometry
    Cerejeiras, Paula
    Kahler, Uwe
    Legatiuk, Dmitrii
    [J]. INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM-2018), 2019, 2116
  • [3] FINITE ELEMENT EXTERIOR CALCULUS FOR PARABOLIC PROBLEMS
    Arnold, Douglas N.
    Chen, Hongtao
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2017, 51 (01): : 17 - 34
  • [4] On basis constructions in finite element exterior calculus
    Licht, Martin W.
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2022, 48 (02)
  • [5] FINITE ELEMENT EXTERIOR CALCULUS FOR EVOLUTION PROBLEMS
    Gillette, Andrew
    Holst, Michael
    Zhu, Yunrong
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 2017, 35 (02) : 187 - 212
  • [6] On basis constructions in finite element exterior calculus
    Martin W. Licht
    [J]. Advances in Computational Mathematics, 2022, 48
  • [7] Smoothed projections in finite element exterior calculus
    Christiansen, Snorre H.
    Winther, Ragnar
    [J]. MATHEMATICS OF COMPUTATION, 2008, 77 (262) : 813 - 829
  • [8] Symmetric Bases for Finite Element Exterior Calculus Spaces
    Berchenko-Kogan, Yakov
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2023,
  • [9] Symmetry and Invariant Bases in Finite Element Exterior Calculus
    Licht, Martin W.
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2024, 24 (04) : 1185 - 1224
  • [10] AN EXTENDED GALERKIN ANALYSIS IN FINITE ELEMENT EXTERIOR CALCULUS
    Hong, Qingguo
    Li, Yuwen
    Xu, Jinchao
    [J]. MATHEMATICS OF COMPUTATION, 2022, 91 (335) : 1077 - 1106