SHARP BOUNDS FOR THE GENERAL RANDIC INDEX OF TREES WITH GIVEN DEGREE SEQUENCES

被引:0
|
作者
Su, Guifu [1 ]
Rao, Gang [1 ]
机构
[1] Beijing Univ Chem Technol, Coll Math & Phys, Beijing 100029, Peoples R China
来源
关键词
degree sequence; the general Rancho index; extremal graphs; tree; 2ND ZAGREB INDEXES; UNICYCLIC GRAPHS;
D O I
10.17654/DM023010025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The general Rancho index R-alpha(G) of a graph G is equal to the sum of the weights [d(u)d(v)](alpha) of all edges try in it, where d(u) denotes the degree of a vertex u in G and alpha is an arbitrary real number. In this paper, we completely characterize the unique extremal tree with the maximum general Rancho index in the class of all trees with a given degree sequence.
引用
收藏
页码:25 / 38
页数:14
相关论文
共 50 条
  • [41] Bounds for the Randic connectivity index
    Gutman, I
    Araujo, O
    Morales, DA
    JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2000, 40 (03): : 593 - 598
  • [42] The ABC Index of Trees with Given Degree Sequence
    Gan, Lu
    Liu, Bolian
    You, Zhifu
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2012, 68 (01) : 137 - 145
  • [43] Sharp Upper Bounds for Energy and Randic Energy
    Bozkurt, Serife Burcu
    Bozkurt, Durmus
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2013, 70 (02) : 669 - 680
  • [44] General Randic index of unicyclic graphs with given number of pendant vertices
    Vetrik, Tomas
    Balachandran, Selvaraj
    DISCRETE MATHEMATICS LETTERS, 2022, 8 : 83 - 88
  • [45] Sharp Bounds on General Multiplicative Zagreb Indices of Trees
    Dehgardi, Nasrin
    Gutman, Ivan
    SSRN,
  • [46] The smallest Randic index for trees
    Li Bingjun
    Liu Weijun
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2013, 123 (02): : 167 - 175
  • [47] The general zeroth-order Randic index of maximal outerplanar graphs and trees with k maximum degree vertices
    Su, Guifu
    Meng, Minghui
    Cui, Lihong
    Chen, Zhibing
    Xu, Lan
    SCIENCEASIA, 2017, 43 (06): : 387 - 393
  • [48] Extremal trees for the Randic index
    Jahanbani, Akbar
    Shooshtari, Hajar
    Shang, Yilun
    ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2022, 14 (02) : 239 - 249
  • [49] The generalized randic index of trees
    Balister, Paul
    Bollobas, Bela
    Gerke, Stefanie
    JOURNAL OF GRAPH THEORY, 2007, 56 (04) : 270 - 286
  • [50] Sharp bounds on the zeroth-order general Randic indices of conjugated bicyclic graphs
    Li, Shuchao
    Zhang, Minjie
    MATHEMATICAL AND COMPUTER MODELLING, 2011, 53 (9-10) : 1990 - 2004