TCACNet: Temporal and channel attention convolutional network for motor imagery classification of EEG-based BCI

被引:33
|
作者
Liu, Xiaolin [1 ]
Shi, Rongye [2 ]
Hui, Qianxin [1 ]
Xu, Susu [3 ]
Wang, Shuai [1 ]
Na, Rui [1 ]
Sun, Ying [1 ]
Ding, Wenbo [4 ,5 ]
Zheng, Dezhi [1 ]
Chen, Xinlei [4 ,5 ]
机构
[1] Beihang Univ, Xueyuan Rd 37, Beijing 100191, Peoples R China
[2] Beijing Inst Technol, 5 South St, Beijing 100081, Peoples R China
[3] SUNY Stony Brook, Nicolls Rd 100, Stony Brook, NY 11794 USA
[4] Tsinghua Univ, Shenzhen Int Grad Sch, Shenzhen 518055, Peoples R China
[5] Peng Cheng Lab, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
Brain-computer interface; Electroencephalogram; Motor imagery classification; Deep learning; Attention mechanism; SYSTEM;
D O I
10.1016/j.ipm.2022.103001
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Brain-computer interface (BCI) is a promising intelligent healthcare technology to improve human living quality across the lifespan, which enables assistance of movement and communica-tion, rehabilitation of exercise and nerves, monitoring sleep quality, fatigue and emotion. Most BCI systems are based on motor imagery electroencephalogram (MI-EEG) due to its advantages of sensory organs affection, operation at free will and etc. However, MI-EEG classification, a core problem in BCI systems, suffers from two critical challenges: the EEG signal's temporal non-stationarity and the nonuniform information distribution over different electrode channels. To address these two challenges, this paper proposes TCACNet, a temporal and channel attention convolutional network for MI-EEG classification. TCACNet leverages a novel attention mechanism module and a well-designed network architecture to process the EEG signals. The former enables the TCACNet to pay more attention to signals of task-related time slices and electrode channels, supporting the latter to make accurate classification decisions. We compare the proposed TCACNet with other state-of-the-art deep learning baselines on two open source EEG datasets. Experimental results show that TCACNet achieves 11.4% and 7.9% classification accuracy improvement on two datasets respectively. Additionally, TCACNet achieves the same accuracy as other baselines with about 50% less training data. In terms of classification accuracy and data efficiency, the superiority of the TCACNet over advanced baselines demonstrates its practical value for BCI systems.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] One-Dimensional Convolutional Multi-branch Fusion Network for EEG-Based Motor Imagery Classification
    Liu, Xiaoguang
    Zhang, Mingjin
    Xiong, Shicheng
    Wang, Xiaodong
    Liang, Tie
    Li, Jun
    Xiong, Peng
    Wang, Hongrui
    Liu, Xiuling
    IRBM, 2023, 44 (06)
  • [32] A Multi-Branch 3D Convolutional Neural Network for EEG-Based Motor Imagery Classification
    Zhao, Xinqiao
    Zhang, Hongmiao
    Zhu, Guilin
    You, Fengxiang
    Kuang, Shaolong
    Sun, Lining
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2019, 27 (10) : 2164 - 2177
  • [33] Optimizing the Channel Selection and Classification Accuracy in EEG-Based BCI
    Arvaneh, Mahnaz
    Guan, Cuntai
    Ang, Kai Keng
    Quek, Chai
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2011, 58 (06) : 1865 - 1873
  • [34] EEG-based motor imagery classification with quantum algorithms
    Olvera, Cynthia
    Ross, Oscar Montiel
    Rubio, Yoshio
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 247
  • [35] Multiclass Classification of Spatially Filtered Motor Imagery EEG Signals Using Convolutional Neural Network for BCI Based Applications
    Shajil, Nijisha
    Mohan, Sasikala
    Srinivasan, Poonguzhali
    Arivudaiyanambi, Janani
    Arasappan Murrugesan, Arunnagiri
    JOURNAL OF MEDICAL AND BIOLOGICAL ENGINEERING, 2020, 40 (05) : 663 - 672
  • [36] Multiclass Classification of Spatially Filtered Motor Imagery EEG Signals Using Convolutional Neural Network for BCI Based Applications
    Nijisha Shajil
    Sasikala Mohan
    Poonguzhali Srinivasan
    Janani Arivudaiyanambi
    Arunnagiri Arasappan Murrugesan
    Journal of Medical and Biological Engineering, 2020, 40 : 663 - 672
  • [37] EEG-based Classification of Lower Limb Motor Imagery with Brain Network Analysis
    Gu, Lingyun
    Yu, Zhenhua
    Ma, Tian
    Wang, Haixian
    Li, Zhanli
    Fan, Hui
    NEUROSCIENCE, 2020, 436 : 93 - 109
  • [38] Shallow Inception Domain Adaptation Network for EEG-Based Motor Imagery Classification
    Huang, Xiuyu
    Choi, Kup-Sze
    Zhou, Nan
    Zhang, Yuanpeng
    Chen, Badong
    Pedrycz, Witold
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2024, 16 (02) : 521 - 533
  • [39] An effective classification approach for EEG-based motor imagery tasks combined with attention mechanisms
    Li, Jixiang
    Shi, Wuxiang
    Li, Yurong
    COGNITIVE NEURODYNAMICS, 2024, : 2689 - 2707
  • [40] Improving EEG-Based Motor Imagery Classification Using Hybrid Neural Network
    Li, Cong
    Yang, Honghong
    Wu, Xia
    Zhang, Yumei
    2021 IEEE 9TH INTERNATIONAL CONFERENCE ON INFORMATION, COMMUNICATION AND NETWORKS (ICICN 2021), 2021, : 486 - 489