Multiclass Classification of Spatially Filtered Motor Imagery EEG Signals Using Convolutional Neural Network for BCI Based Applications

被引:28
|
作者
Shajil, Nijisha [1 ]
Mohan, Sasikala [1 ]
Srinivasan, Poonguzhali [1 ]
Arivudaiyanambi, Janani [1 ]
Arasappan Murrugesan, Arunnagiri [1 ]
机构
[1] Anna Univ, Ctr Med Elect, Dept Elect & Commun Engn, Coll Engn Guindy CEG, Chennai 600025, Tamil Nadu, India
关键词
Brain-computer interface; EEG data; Motor imagery; Convolutional neural network; Common spatial pattern; Spectrogram;
D O I
10.1007/s40846-020-00538-3
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Purpose Brain-Computer Interface (BCI) system offers a new means of communication for those with paralysis or severe neuromuscular disorders. BCI systems based on Motor Imagery (MI) Electroencephalography (EEG) signals enable the user to convert their thoughts into actions without any voluntary muscle movement. Recently, Convolutional neural network (CNN) is used for the classification of MI signals. However, to produce good MI classification, it is necessary to effectively represent the signal as an input image to the CNN and train the deep learning classifier using large training data. Methods In this work, EEG signals are acquired over 16 channels and are filtered using a bandpass filter with the frequency range of 1 to 100 Hz. The processed signal is spatially filtered using Common Spatial Pattern (CSP) filter. The spectrograms of the spatially filtered signals are given as input to CNN. A single convolutional layer CNN is designed to classify left hand, right hand, both hands, and feet MI EEG signals. The size of the training data is increased by augmenting the spectrograms of the EEG signals. Results The CNN classifier was evaluated using MI signals acquired from twelve healthy subjects. Results show that the proposed method achieved an average classification accuracy of 95.18 +/- 2.51% for two-class (left hand and right hand) and 87.37 +/- 1.68% for four-class (Left hand, Right hand, Both hands, and Feet) MI. Conclusion Thus, the method manifests that this 2D representation of 1D EEG signal along with image augmentation shows a high potential for classification of MI EEG signals using the designed CNN model.
引用
收藏
页码:663 / 672
页数:10
相关论文
共 50 条
  • [1] Multiclass Classification of Spatially Filtered Motor Imagery EEG Signals Using Convolutional Neural Network for BCI Based Applications
    Nijisha Shajil
    Sasikala Mohan
    Poonguzhali Srinivasan
    Janani Arivudaiyanambi
    Arunnagiri Arasappan Murrugesan
    Journal of Medical and Biological Engineering, 2020, 40 : 663 - 672
  • [2] Classification of Motor Imagery Signals by Convolutional Neural Network for BCI Applications
    Balim, Mustafa Alper
    Acir, Nurettin
    2019 27TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2019,
  • [3] EEG Classification for Multiclass Motor Imagery BCI
    Liu, Chong
    Wang, Hong
    Lu, Zhiguo
    2013 25TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2013, : 4450 - 4453
  • [4] Investigation of deep convolutional neural network for classification of motor imagery fNIRS signals for BCI applications
    Janani, A.
    Sasikala, M.
    Chhabra, Harleen
    Shajil, Nijisha
    Venkatasubramanian, Ganesan
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2020, 62
  • [5] EEG Signals Based Motor Imagery and Movement Classification for BCI Applications
    Tasar, Beyda
    Yaman, Orhan
    2022 INTERNATIONAL CONFERENCE ON DECISION AID SCIENCES AND APPLICATIONS (DASA), 2022, : 1425 - 1429
  • [6] Classification of BCI Multiclass Motor Imagery Task Based on Artificial Neural Network
    Echtioui, Amira
    Zouch, Wassim
    Ghorbel, Mohamed
    Mhiri, Chokri
    Hamam, Habib
    CLINICAL EEG AND NEUROSCIENCE, 2024, 55 (04) : 455 - 464
  • [7] A classification method for EEG motor imagery signals based on parallel convolutional neural network
    Han, Yuexing
    Wang, Bing
    Luo, Jie
    Li, Long
    Li, Xiaolong
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 71
  • [8] Common Bayesian Network for Classification of EEG-Based Multiclass Motor Imagery BCI
    He, Lianghua
    Hu, Die
    Wan, Meng
    Wen, Ying
    von Deneen, Karen M.
    Zhou, MengChu
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2016, 46 (06): : 843 - 854
  • [9] EEG-BCI-based motor imagery classification using double attention convolutional network
    Sireesha, V.
    Tallapragada, V. V. Satyanarayana
    Naresh, M.
    Pradeep Kumar, G. V.
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING, 2023,
  • [10] Convolutional Neural Network Based Approach Towards Motor Imagery Tasks EEG Signals Classification
    Chaudhary, Shalu
    Taran, Sachin
    Bajaj, Varun
    Sengur, Abdulkadir
    IEEE SENSORS JOURNAL, 2019, 19 (12) : 4494 - 4500