Multiclass Classification of Spatially Filtered Motor Imagery EEG Signals Using Convolutional Neural Network for BCI Based Applications

被引:28
|
作者
Shajil, Nijisha [1 ]
Mohan, Sasikala [1 ]
Srinivasan, Poonguzhali [1 ]
Arivudaiyanambi, Janani [1 ]
Arasappan Murrugesan, Arunnagiri [1 ]
机构
[1] Anna Univ, Ctr Med Elect, Dept Elect & Commun Engn, Coll Engn Guindy CEG, Chennai 600025, Tamil Nadu, India
关键词
Brain-computer interface; EEG data; Motor imagery; Convolutional neural network; Common spatial pattern; Spectrogram;
D O I
10.1007/s40846-020-00538-3
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Purpose Brain-Computer Interface (BCI) system offers a new means of communication for those with paralysis or severe neuromuscular disorders. BCI systems based on Motor Imagery (MI) Electroencephalography (EEG) signals enable the user to convert their thoughts into actions without any voluntary muscle movement. Recently, Convolutional neural network (CNN) is used for the classification of MI signals. However, to produce good MI classification, it is necessary to effectively represent the signal as an input image to the CNN and train the deep learning classifier using large training data. Methods In this work, EEG signals are acquired over 16 channels and are filtered using a bandpass filter with the frequency range of 1 to 100 Hz. The processed signal is spatially filtered using Common Spatial Pattern (CSP) filter. The spectrograms of the spatially filtered signals are given as input to CNN. A single convolutional layer CNN is designed to classify left hand, right hand, both hands, and feet MI EEG signals. The size of the training data is increased by augmenting the spectrograms of the EEG signals. Results The CNN classifier was evaluated using MI signals acquired from twelve healthy subjects. Results show that the proposed method achieved an average classification accuracy of 95.18 +/- 2.51% for two-class (left hand and right hand) and 87.37 +/- 1.68% for four-class (Left hand, Right hand, Both hands, and Feet) MI. Conclusion Thus, the method manifests that this 2D representation of 1D EEG signal along with image augmentation shows a high potential for classification of MI EEG signals using the designed CNN model.
引用
收藏
页码:663 / 672
页数:10
相关论文
共 50 条
  • [21] A Novel Simplified Convolutional Neural Network Classification Algorithm of Motor Imagery EEG Signals Based on Deep Learning
    Li, Feng
    He, Fan
    Wang, Fei
    Zhang, Dengyong
    Xia, Yi
    Li, Xiaoyu
    APPLIED SCIENCES-BASEL, 2020, 10 (05):
  • [22] Object Movement Motor Imagery for EEG based BCI System using Convolutional Neural Networks
    Petoku, Eneo
    Capi, Genci
    2021 9TH IEEE INTERNATIONAL WINTER CONFERENCE ON BRAIN-COMPUTER INTERFACE (BCI), 2021, : 121 - 125
  • [23] TCACNet: Temporal and channel attention convolutional network for motor imagery classification of EEG-based BCI
    Liu, Xiaolin
    Shi, Rongye
    Hui, Qianxin
    Xu, Susu
    Wang, Shuai
    Na, Rui
    Sun, Ying
    Ding, Wenbo
    Zheng, Dezhi
    Chen, Xinlei
    INFORMATION PROCESSING & MANAGEMENT, 2022, 59 (05)
  • [24] An Approach for BCI Using Motor Imagery Based on Wavelet Transform and Convolutional Neural Network
    Rabcanova, Lenka
    Vargic, Radoslav
    SYSTEMS, SIGNALS AND IMAGE PROCESSING, IWSSIP 2021, 2022, 1527 : 185 - 197
  • [25] Classification of EEG Motor Imagery Using Support Vector Machine and Convolutional Neural Network
    Wu, Yu-Te
    Huang, Tzu Hsuan
    Lin, Chun Yi
    Tsai, Sheng Jia
    Wang, Po-Shan
    2018 INTERNATIONAL AUTOMATIC CONTROL CONFERENCE (CACS), 2018,
  • [26] Subject adaptation convolutional neural network for EEG-based motor imagery classification
    Liu, Siwei
    Zhang, Jia
    Wang, Andong
    Wu, Hanrui
    Zhao, Qibin
    Long, Jinyi
    JOURNAL OF NEURAL ENGINEERING, 2022, 19 (06)
  • [27] Classification of Motor Imagery Tasks Using EEG Based on Wavelet Scattering Transform and Convolutional Neural Network
    Buragohain, Rantu
    Ajaybhai, Jejariya
    Nathwani, Karan
    Abrol, Vinayak
    IEEE Sensors Letters, 2024, 8 (12):
  • [28] MOTOR IMAGERY FOR EEG BIOMETRICS USING CONVOLUTIONAL NEURAL NETWORK
    Das, Rig
    Maiorana, Emanuele
    Campisi, Patrizio
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 2062 - 2066
  • [29] Classification of Motor Imagery EEG signals using high resolution time-frequency representations and convolutional neural network
    Srimadumathi, V
    Ramasubba Reddy, M.
    BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2024, 10 (03)
  • [30] Classification of Motor Imagery EEG Signals with multi-input Convolutional Neural Network by augmenting STFT
    Shovon, Tanvir Hasan
    Al Nazi, Zabir
    Dash, Shovon
    Hossain, Md Foisal
    2019 5TH INTERNATIONAL CONFERENCE ON ADVANCES IN ELECTRICAL ENGINEERING (ICAEE), 2019, : 398 - 403