An Unsupervised Deep-Transfer-Learning-Based Motor Imagery EEG Classification Scheme for Brain-Computer Interface

被引:15
|
作者
Wang, Xuying [1 ,2 ]
Yang, Rui [1 ,3 ]
Huang, Mengjie [4 ]
机构
[1] Xian Jiaotong Liverpool Univ, Sch Adv Technol, Suzhou 215123, Peoples R China
[2] Univ Liverpool, Sch Elect Engn Elect & Comp Sci, Liverpool, Merseyside, England
[3] Xian Jiaotong Liverpool Univ, Res Inst Big Data Analyt, Suzhou 215123, Peoples R China
[4] Xian Jiaotong Liverpool Univ, Design Sch, Suzhou 215123, Peoples R China
基金
中国国家自然科学基金;
关键词
brain-computer interface; motor imagery; electroencephalography; transfer learning; common spatial pattern; BCI; DESIGN;
D O I
10.3390/s22062241
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Brain-computer interface (BCI) research has attracted worldwide attention and has been rapidly developed. As one well-known non-invasive BCI technique, electroencephalography (EEG) records the brain's electrical signals from the scalp surface area. However, due to the non-stationary nature of the EEG signal, the distribution of the data collected at different times or from different subjects may be different. These problems affect the performance of the BCI system and limit the scope of its practical application. In this study, an unsupervised deep-transfer-learning-based method was proposed to deal with the current limitations of BCI systems by applying the idea of transfer learning to the classification of motor imagery EEG signals. The Euclidean space data alignment (EA) approach was adopted to align the covariance matrix of source and target domain EEG data in Euclidean space. Then, the common spatial pattern (CSP) was used to extract features from the aligned data matrix, and the deep convolutional neural network (CNN) was applied for EEG classification. The effectiveness of the proposed method has been verified through the experiment results based on public EEG datasets by comparing with the other four methods.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Sparse representation-based classification scheme for motor imagery-based brain-computer interface systems
    Shin, Younghak
    Lee, Seungchan
    Lee, Junho
    Lee, Heung-No
    JOURNAL OF NEURAL ENGINEERING, 2012, 9 (05)
  • [22] Transfer Kernel Common Spatial Patterns for Motor Imagery Brain-Computer Interface Classification
    Dai, Mengxi
    Zheng, Dezhi
    Liu, Shucong
    Zhang, Pengju
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2018, 2018 : 9871603
  • [23] Transfer learning for motor imagery based brain-computer interfaces: A tutorial
    Wu, Dongrui
    Jiang, Xue
    Peng, Ruimin
    NEURAL NETWORKS, 2022, 153 : 235 - 253
  • [24] Signal classification algorithm in motor imagery based on asynchronous brain-computer interface
    Jiang, Yu
    He, Jingyan
    Li, Dandan
    Jin, Jing
    Shen, Yi
    2019 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC), 2019, : 1422 - 1426
  • [25] Convolutional neural network based features for motor imagery EEG signals classification in brain-computer interface system
    Taheri, Samaneh
    Ezoji, Mehdi
    Sakhaei, Sayed Mahmoud
    SN APPLIED SCIENCES, 2020, 2 (04):
  • [26] Motor imagery based brain-computer interface: improving the EEG classification using Delta rhythm and LightGBM algorithm
    Abenna, Said
    Nahid, Mohammed
    Bajit, Abderrahim
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 71
  • [27] A Motor Imagery Based Brain-Computer Interface Speller
    Xia, Bin
    Yang, Jing
    Cheng, Conghui
    Xie, Hong
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, PT II, 2013, 7903 : 413 - 421
  • [28] Towards Enhanced EEG-based Authentication with Motor Imagery Brain-Computer Interface
    Wu, Bingkun
    Meng, Weizhi
    Chiu, Wei-Yang
    PROCEEDINGS OF THE 38TH ANNUAL COMPUTER SECURITY APPLICATIONS CONFERENCE, ACSAC 2022, 2022, : 799 - 812
  • [29] Motor Imagery EEG Signal Classification based on Deep Transfer Learning
    Wei, Mingnan
    Yang, Rui
    Huang, Mengjie
    2021 IEEE 34TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS), 2021, : 85 - 90
  • [30] Transfer Learning Algorithm Design for Feature Transfer Problem in Motor Imagery Brain-computer Interface
    Yu Zhang
    Huaqing Li
    Heng Dong
    Zheng Dai
    Xing Chen
    Zhuoming Li
    ChinaCommunications, 2022, 19 (02) : 39 - 46