Transfer learning for motor imagery based brain-computer interfaces: A tutorial

被引:55
|
作者
Wu, Dongrui [1 ]
Jiang, Xue [1 ]
Peng, Ruimin [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automat, Key Lab Minist Educ Image Proc & Intelligent Contr, Wuhan 430074, Peoples R China
关键词
Brain-computer interface; Electroencephalogram; Transfer learning; Euclidean alignment; Motor imagery; SINGLE-TRIAL EEG; ADAPTATION REGULARIZATION; FEATURE-SELECTION; CLASSIFICATION; TIME; REHABILITATION; PERFORMANCE; FRAMEWORK; DYNAMICS;
D O I
10.1016/j.neunet.2022.06.008
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A brain-computer interface (BCI) enables a user to communicate directly with an external device, e.g., a computer, using brain signals. It can be used to research, map, assist, augment, or repair human cognitive or sensory-motor functions. A closed-loop BCI system performs signal acquisition, temporal filtering, spatial filtering, feature engineering and classification, before sending out the control signal to an external device. Transfer learning (TL) has been widely used in motor imagery (MI) based BCIs to reduce the calibration effort for a new subject, greatly increasing their utility. This tutorial describes how TL can be considered in as many components of a BCI system as possible, and introduces a complete TL pipeline for MI-based BCIs. Examples on two MI datasets demonstrated the advantages of considering TL in multiple components of MI-based BCIs. Especially, integrating data alignment and sophisticated TL approaches can significantly improve the classification performance, and hence greatly reduces the calibration effort.
引用
收藏
页码:235 / 253
页数:19
相关论文
共 50 条
  • [1] Transfer Learning Based on Optimal Transport for Motor Imagery Brain-Computer Interfaces
    Peterson, Victoria
    Nieto, Nicolas
    Wyser, Dominik
    Lambercy, Olivier
    Gassert, Roger
    Milone, Diego H.
    Spies, Ruben D.
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2022, 69 (02) : 807 - 817
  • [2] Motor task-to-task transfer learning for motor imagery brain-computer interfaces
    Gwon, Daeun
    Ahn, Minkyu
    NEUROIMAGE, 2024, 302
  • [3] CWT Based Transfer Learning for Motor Imagery Classification for Brain computer Interfaces
    Kant, Piyush
    Laskar, Shahedul Haque
    Hazarika, Jupitara
    Mahamune, Rupesh
    JOURNAL OF NEUROSCIENCE METHODS, 2020, 345
  • [4] Motor imagery and brain-computer interfaces for restoration of movement
    Neuper, Christa
    INTERNATIONAL JOURNAL OF PSYCHOLOGY, 2008, 43 (3-4) : 724 - 724
  • [5] Normalization of Feature Distribution in Motor Imagery Based Brain-Computer Interfaces
    Binias, Bartosz
    Grzejszczak, Tomasz
    Niezabitowski, Michal
    2016 24TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED), 2016, : 1337 - 1342
  • [6] Transfer Learning in Brain-Computer Interfaces
    Jayaram, Vinay
    Alamgir, Morteza
    Altun, Yasemin
    Schoelkopf, Bernhard
    Grosse-Wentrup, Moritz
    IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2016, 11 (01) : 20 - 31
  • [7] An Impending Paradigm Shift in Motor Imagery Based Brain-Computer Interfaces
    Papadopoulos, Sotirios
    Bonaiuto, James
    Mattout, Jeremie
    FRONTIERS IN NEUROSCIENCE, 2022, 15
  • [8] Phase-based features for Motor Imagery Brain-Computer Interfaces
    Hamner, Benjamin
    Leeb, Robert
    Tavella, Michele
    Millan, Jose del R.
    2011 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2011, : 2578 - 2581
  • [9] A correntropy-based classifier for motor imagery brain-computer interfaces
    Suarez Uribe, Luisa Fernanda
    Stefano Filho, Carlos Alberto
    de Oliveira, Vinicius Alves
    da Silva Costa, Thiago Bulhoes
    Rodrigues, Paula Gabrielly
    Soriano, Diogo Coutinho
    Boccato, Levy
    Castellano, Gabriela
    Attux, Romis
    BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2019, 5 (06):
  • [10] Relation Learning Using Temporal Episodes for Motor Imagery Brain-Computer Interfaces
    Huang, Xiuyu
    Liang, Shuang
    Zhang, Yuanpeng
    Zhou, Nan
    Pedrycz, Witold
    Choi, Kup-Sze
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2023, 31 : 530 - 543