Parallel High-Radix Montgomery Multipliers

被引:15
|
作者
Amberg, Philip [1 ]
Pinckney, Nathaniel [1 ]
Harris, David Money [1 ]
机构
[1] Harvey Mudd Coll, Claremont, CA 91711 USA
关键词
D O I
10.1109/ACSSC.2008.5074513
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper describes the algorithm and design tradeoffs for multiple hardware implementations of parallel high-radix scalable Montgomery multipliers. Hardware implementations of Montgomery multipliers require choosing a radix, shift direction, and whether to use Booth encoding. Presented are processing element designs exploring combinations of radices 2, 4, and 8, right vs. left shifting, and Booth encoding. A radix-4, left-shifting, non-Booth encoded design performs a 1024-bit modular exponentiation in 9.4 ms using 4997 LUTs and 4051 REGs and appears to maximize performance/hardware in an FPGA implementation. A Booth encoded version of the above multiplier performs a 1024-bit modular exponentiation in 13 ms using 4852 LUTs and 2887 REGs. This design may be beneficial for systems constrained by the cycle time of other elements because the design minimizes hardware usage and requires no precomputed multiples. The radix-8, right-shifting, Booth-encoded design offers no performance/hardware advantage over a comparable radix-4 design.
引用
收藏
页码:772 / 776
页数:5
相关论文
共 50 条
  • [1] Systematic design of high-radix Montgomery multipliers for RSA processors
    Miyamoto, Atsushi
    Homma, Naofumi
    Aoki, Takafumi
    Satoh, Akashi
    [J]. 2008 IEEE INTERNATIONAL CONFERENCE ON COMPUTER DESIGN, 2008, : 416 - +
  • [2] Systematic Design of RSA Processors Based on High-Radix Montgomery Multipliers
    Miyamoto, Atsushi
    Homma, Naofumi
    Aoki, Takafumi
    Satoh, Akashi
    [J]. IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2011, 19 (07) : 1136 - 1146
  • [3] Fast RSA decryption through high-radix scalable Montgomery modular multipliers
    Wu Tao
    Li ShuGuo
    Liu LiTian
    [J]. SCIENCE CHINA-INFORMATION SCIENCES, 2015, 58 (06) : 1 - 16
  • [4] Fast RSA decryption through high-radix scalable Montgomery modular multipliers
    WU Tao
    LI ShuGuo
    LIU LiTian
    [J]. Science China(Information Sciences), 2015, 58 (06) : 136 - 151
  • [5] A modified high-radix scalable montgomery multiplier
    Fan, Yibo
    Zeng, Xiaoyang
    Yu, Yu
    Wang, Gang
    Zhang, Qianling
    [J]. 2006 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-11, PROCEEDINGS, 2006, : 3382 - +
  • [6] Efficient High-Radix GF(p) Montgomery Modular Multiplication Via Deep Use Of Multipliers
    Wu, Ruoyu
    Xu, Ming
    Yang, Yingqing
    Tian, Guanzhong
    Yu, Ping
    Zhao, Yangfan
    Lian
    Ma, Longhua
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2022, 69 (12) : 5099 - 5103
  • [7] High-radix montgomery modular exponentiation on reconfigurable hardware
    Blum, T
    Paar, C
    [J]. IEEE TRANSACTIONS ON COMPUTERS, 2001, 50 (07) : 759 - 764
  • [8] Very high radix scalable Montgomery multipliers
    Kelley, K
    Harris, D
    [J]. FIFTH INTERNATIONAL WORKSHOP ON SYSTEM-ON-CHIP FOR REAL-TIME APPLICATIONS, PROCEEDINGS, 2005, : 400 - 404
  • [9] High Radix Implementation of Montgomery Multipliers with CSA
    Sassaw, Gashaw
    Jimenez, Carlos J.
    Valencia, Manuel
    [J]. 2010 INTERNATIONAL CONFERENCE ON MICROELECTRONICS, 2010, : 315 - 318
  • [10] High-radix modulo rn -: 1 Multipliers and Adders
    Kouretas, I
    Paliouras, V
    [J]. ICES 2002: 9TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS AND SYSTEMS, VOLS I-111, CONFERENCE PROCEEDINGS, 2002, : 561 - 564