Harmonicity of proper almost complex structures on Walker 4-manifolds

被引:0
|
作者
Davidov, Johann [1 ,2 ]
Ul-Haq, Absar [2 ]
Mushkarov, Oleg [1 ,3 ]
机构
[1] Bulgarian Acad Sci, Inst Math & Informat, BU-1113 Sofia, Bulgaria
[2] Govt Coll Univ, Abdus Salam Sch Math Sci, Lahore, Pakistan
[3] South West Univ, Blagoevgrad 2700, Bulgaria
关键词
Harmonic almost complex structure; Walker metric; proper almost complex structure; hyperbolic twistor space; SURFACES; METRICS;
D O I
10.1142/S0219887817500943
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Every Walker 4-manifold M, endowed with a canonical neutral metric g, admits a specific almost complex structure called proper. In this paper, we find the conditions under which a proper almost complex structure is a harmonic section or a harmonic map from (M, g) to its hyperbolic twistor space.
引用
收藏
页数:20
相关论文
共 50 条