Almost complex structures on hyperbolic manifolds

被引:0
|
作者
D. Kotschick
机构
[1] LMU München,Mathematisches Institut
来源
Mathematische Zeitschrift | 2023年 / 305卷
关键词
Almost complex structure; Hyperbolic manifold; Characteristic number; Primary 32Q60; 22E40; 57R15; Secondary 53C20; 55R50; 57R20;
D O I
暂无
中图分类号
学科分类号
摘要
We discuss the existence of almost complex structures on closed hyperbolic manifolds of even dimension at least four. We prove that for n=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=2$$\end{document} and for all odd n every hyperbolic 2n-manifold has a finite covering admitting an almost complex structure. Conjecturally this should be true for all n. For n=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=4$$\end{document} we prove it for arithmetic manifolds.
引用
收藏
相关论文
共 50 条