Harmonicity of proper almost complex structures on Walker 4-manifolds

被引:0
|
作者
Davidov, Johann [1 ,2 ]
Ul-Haq, Absar [2 ]
Mushkarov, Oleg [1 ,3 ]
机构
[1] Bulgarian Acad Sci, Inst Math & Informat, BU-1113 Sofia, Bulgaria
[2] Govt Coll Univ, Abdus Salam Sch Math Sci, Lahore, Pakistan
[3] South West Univ, Blagoevgrad 2700, Bulgaria
关键词
Harmonic almost complex structure; Walker metric; proper almost complex structure; hyperbolic twistor space; SURFACES; METRICS;
D O I
10.1142/S0219887817500943
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Every Walker 4-manifold M, endowed with a canonical neutral metric g, admits a specific almost complex structure called proper. In this paper, we find the conditions under which a proper almost complex structure is a harmonic section or a harmonic map from (M, g) to its hyperbolic twistor space.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Walker 4-manifolds with proper almost complex structures
    Matsushita, Y
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2005, 55 (04) : 385 - 398
  • [2] HARMONIC PROPER ALMOST COMPLEX STRUCTURES ON WALKER 4-MANIFOLDS
    Davidov, Johann
    Ul Haq, Absar
    Mushkarov, Oleg
    [J]. COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2016, 69 (02): : 127 - 134
  • [3] Almost Kahler Walker 4-manifolds
    Davidov, J.
    Diaz-Ramos, J. C.
    Garcia-Rio, E.
    Matsushita, Y.
    Muskarov, O.
    Vazquez-Lorenzo, R.
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2007, 57 (03) : 1075 - 1088
  • [4] Almost paracomplex structures on 4-manifolds
    Georgiou, Nikos
    Guilfoyle, Brendan
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2022, 82
  • [5] On Cohomology of Almost Complex 4-Manifolds
    Tan, Qiang
    Wang, Hongyu
    Zhang, Ying
    Zhu, Peng
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2015, 25 (03) : 1431 - 1443
  • [6] On Cohomology of Almost Complex 4-Manifolds
    Qiang Tan
    Hongyu Wang
    Ying Zhang
    Peng Zhu
    [J]. The Journal of Geometric Analysis, 2015, 25 : 1431 - 1443
  • [7] The curve cone of almost complex 4-manifolds
    Zhang, Weiyi
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2017, 115 : 1227 - 1275
  • [8] Symplectic, Hermitian and Kahler Structures on Walker 4-Manifolds
    Garcia-Rio, Eduardo
    Haze, Seiya
    Katayama, Noriaki
    Matsushita, Yasuo
    [J]. JOURNAL OF GEOMETRY, 2008, 90 (1-2) : 56 - 65
  • [9] ON NORDEN STRUCTURES ON NEUTRAL 4-MANIFOLDS WITH ALMOST PARACOMPLEX STRUCTURES
    Iscan, Murat
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2013, 10 (10)
  • [10] Immersions of surfaces in almost-complex 4-manifolds
    Bohr, C
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (05) : 1523 - 1532